login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A136667
Triangle read by rows: T(n, k) is the coefficient of x^k in the polynomial 1 - T_n(x)^2, where T_n(x) is the n-th Hermite polynomial of the Hochstadt kind (A137286) as related to the generalized Chebyshev in a Shabat way (A123583): p(x,n)=x*p(x,n-1)-p(x,n-2); q(x,n)=1-p(x,n)^2.
0
0, 1, 0, -1, -3, 0, 4, 0, -1, 1, 0, -25, 0, 10, 0, -1, -63, 0, 144, 0, -97, 0, 18, 0, -1, 1, 0, -1089, 0, 924, 0, -262, 0, 28, 0, -1, -2303, 0, 8352, 0, -9489, 0, 3576, 0, -574, 0, 40, 0, -1, 1, 0, -77841, 0, 103230, 0, -49291, 0, 10548, 0, -1099, 0, 54, 0, -1, -147455, 0, 748800, 0, -1215585, 0, 699630, 0, -188043, 0
OFFSET
1,5
COMMENTS
Row sums are {0, 0, 0, -15, 1, -399, -399, -14399, -78399, -639999, -12959999}.
REFERENCES
Defined: page 8 and pages 42 - 43: Harry Hochstadt, The Functions of Mathematical Physics, Dover, New York, 1986
G. B. Shabat and I. A. Voevodskii, Drawing curves over number fields, The Grothendieck Festschift, vol. 3, Birkhäuser, 1990, pp. 199-22
LINKS
G. B. Shabat and A. Zvonkin, Plane trees and algebraic numbers, Contemporary Math., 1994, vol. 178, 233-275.
FORMULA
out=1-A137286(x,n)^2; p(x,n)=x*p(x,n-1)-p(x,n-2); q(x,n)=1-p(x,n)^2.
EXAMPLE
The irregular triangle begins
{0},
{1, 0, -1},
{-3, 0, 4, 0, -1},
{1, 0, -25, 0, 10, 0, -1},
{-63, 0, 144, 0, -97, 0, 18, 0, -1},
{1, 0, -1089, 0, 924, 0, -262,0, 28, 0, -1},
{-2303, 0, 8352, 0, -9489, 0, 3576, 0, -574, 0, 40, 0, -1},
{1, 0, -77841, 0, 103230, 0, -49291, 0, 10548,0, -1099, 0, 54, 0, -1},
...
MATHEMATICA
P[x, 0] = 1; P[x, 1] = x; P[x_, n_] := P[x, n] = x*P[x, n - 1] - n*P[x, n - 2]; Q[x_, n_] := Q[x, n] = 1 - P[x, n]^2; Table[ExpandAll[Q[x, n]], {n, 0, 10}]; a = Join[{{0}}, Table[CoefficientList[Q[x, n], x], {n, 0, 10}]]; Flatten[a]
PROG
(PARI) polx(n) = if (n == 0, 1, if (n == 1, x, x*polx(n - 1) - n*polx(n - 2)));
tabf(nn) = {for (n = 0, nn, pol = 1 - polx(n)^2; for (i = 0, 2*n, print1(polcoeff(pol, i), ", "); ); print(); ); } \\ Michel Marcus, Feb 26 2018
CROSSREFS
KEYWORD
uned,tabf,sign
AUTHOR
Roger L. Bagula, Apr 02 2008
EXTENSIONS
Keyword changed to tabf by Michel Marcus, Feb 26 2018
STATUS
approved