login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142461
Triangle read by rows: T(n,k) (1 <= k <= n) given by T(n, 1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = 6.
7
1, 1, 1, 1, 14, 1, 1, 111, 111, 1, 1, 796, 2886, 796, 1, 1, 5597, 52642, 52642, 5597, 1, 1, 39210, 824271, 2000396, 824271, 39210, 1, 1, 274507, 11931033, 58614299, 58614299, 11931033, 274507, 1, 1, 1921592, 165260188, 1483533704, 2930714950, 1483533704, 165260188, 1921592, 1
OFFSET
1,5
LINKS
G. Strasser, Generalisation of the Euler adic, Math. Proc. Camb. Phil. Soc. 150 (2010) 241-256, Triangle A_6(n,k).
FORMULA
T(n,k,m) = (m*n - m*k + 1)*T(n-1, k-1, m) + (m*k - (m-1))*T(n-1, k, m), with T(n, 1, m) = T(n, n, m) = 1, and m = 6.
Sum_{k=1..n} T(n, k, 6) = A047657(n-1).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 14, 1;
1, 111, 111, 1;
1, 796, 2886, 796, 1;
1, 5597, 52642, 52642, 5597, 1;
1, 39210, 824271, 2000396, 824271, 39210, 1;
1, 274507, 11931033, 58614299, 58614299, 11931033, 274507, 1;
MATHEMATICA
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k -m+1)*T[n-1, k, m]];
A142461[n_, k_]:= T[n, k, 6];
Table[A142461[n, k], {n, 12}, {k, n}]//Flatten (* modified by G. C. Greubel, Mar 17 2022 *)
PROG
(Sage)
@CachedFunction
def T(n, k, m):
if (k==1 or k==n): return 1
else: return (m*(n-k)+1)*T(n-1, k-1, m) + (m*k-m+1)*T(n-1, k, m)
def A142461(n, k): return T(n, k, 6)
flatten([[ A142461(n, k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 17 2022
CROSSREFS
For m = ...,-2,-1,0,1,2,3,4,5,6,7, ... we get ..., A225372, A144431, A007318, A008292, A060187, A142458, A142459, A142460, ...
Cf. A047657 (row sums).
Sequence in context: A157278 A144441 A157150 * A174720 A060628 A022177
KEYWORD
nonn,tabl,easy
AUTHOR
Roger L. Bagula, Sep 19 2008
EXTENSIONS
Edited by N. J. A. Sloane, May 08 2013
STATUS
approved