login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A157278
Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k if k <= floor(n/2) otherwise 2*(n-k), and m = 3, read by rows.
8
1, 1, 1, 1, 14, 1, 1, 69, 69, 1, 1, 292, 1134, 292, 1, 1, 1187, 11686, 11686, 1187, 1, 1, 4770, 100737, 254132, 100737, 4770, 1, 1, 19105, 795723, 4061249, 4061249, 795723, 19105, 1, 1, 76448, 5990296, 55157324, 111691642, 55157324, 5990296, 76448, 1
OFFSET
0,5
FORMULA
T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k if k <= floor(n/2) otherwise 2*(n-k), and m = 3.
T(n, n-k, m) = T(n, k, m).
EXAMPLE
Triangle begins as:
1;
1, 1;
1, 14, 1;
1, 69, 69, 1;
1, 292, 1134, 292, 1;
1, 1187, 11686, 11686, 1187, 1;
1, 4770, 100737, 254132, 100737, 4770, 1;
1, 19105, 795723, 4061249, 4061249, 795723, 19105, 1;
1, 76448, 5990296, 55157324, 111691642, 55157324, 5990296, 76448, 1;
MATHEMATICA
f[n_, k_]:= If[k<=Floor[n/2], 2*k, 2*(n-k)];
T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1, k-1, m] + (m*k+1)*T[n-1, k, m] + m*f[n, k]*T[n-2, k-1, m]];
Table[T[n, k, 3], {n, 0, 12}, {k, 0, n}]//Flatten (* modified by G. C. Greubel, Feb 06 2022 *)
PROG
(Sage)
def f(n, k): return 2*k if (k <= n//2) else 2*(n-k)
@CachedFunction
def T(n, k, m): # A157278
if (k==0 or k==n): return 1
else: return (m*(n-k) +1)*T(n-1, k-1, m) + (m*k+1)*T(n-1, k, m) + m*f(n, k)*T(n-2, k-1, m)
flatten([[T(n, k, 3) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 06 2022
KEYWORD
nonn,tabl
AUTHOR
Roger L. Bagula, Feb 26 2009
EXTENSIONS
Edited by G. C. Greubel, Feb 06 2022
STATUS
approved