Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Feb 06 2022 04:02:42
%S 1,1,1,1,14,1,1,69,69,1,1,292,1134,292,1,1,1187,11686,11686,1187,1,1,
%T 4770,100737,254132,100737,4770,1,1,19105,795723,4061249,4061249,
%U 795723,19105,1,1,76448,5990296,55157324,111691642,55157324,5990296,76448,1
%N Triangle T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k if k <= floor(n/2) otherwise 2*(n-k), and m = 3, read by rows.
%H G. C. Greubel, <a href="/A157278/b157278.txt">Rows n = 0..50 of the triangle, flattened</a>
%F T(n, k, m) = (m*(n-k) + 1)*T(n-1, k-1, m) + (m*k + 1)*T(n-1, k, m) + m*f(n,k)*T(n-2, k-1, m) with T(n, 0, m) = T(n, n, m) = 1, f(n, k) = 2*k if k <= floor(n/2) otherwise 2*(n-k), and m = 3.
%F T(n, n-k, m) = T(n, k, m).
%e Triangle begins as:
%e 1;
%e 1, 1;
%e 1, 14, 1;
%e 1, 69, 69, 1;
%e 1, 292, 1134, 292, 1;
%e 1, 1187, 11686, 11686, 1187, 1;
%e 1, 4770, 100737, 254132, 100737, 4770, 1;
%e 1, 19105, 795723, 4061249, 4061249, 795723, 19105, 1;
%e 1, 76448, 5990296, 55157324, 111691642, 55157324, 5990296, 76448, 1;
%t f[n_,k_]:= If[k<=Floor[n/2], 2*k, 2*(n-k)];
%t T[n_, k_, m_]:= T[n, k, m]= If[k==0 || k==n, 1, (m*(n-k)+1)*T[n-1,k-1,m] + (m*k+1)*T[n-1,k,m] + m*f[n,k]*T[n-2,k-1,m]];
%t Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Feb 06 2022 *)
%o (Sage)
%o def f(n,k): return 2*k if (k <= n//2) else 2*(n-k)
%o @CachedFunction
%o def T(n,k,m): # A157278
%o if (k==0 or k==n): return 1
%o else: return (m*(n-k) +1)*T(n-1,k-1,m) + (m*k+1)*T(n-1,k,m) + m*f(n,k)*T(n-2,k-1,m)
%o flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 06 2022
%Y Cf. A007318 (m=0), A157275 (m=1), A157277 (m=2), this sequence (m=3).
%Y Cf. A157147, A157148, A157149, A157150, A157151, A157152, A157153, A157154, A157155, A157156, A157207, A157208, A157209, A157210, A157211, A157212, A157268, A157272, A157273, A157274.
%K nonn,tabl
%O 0,5
%A _Roger L. Bagula_, Feb 26 2009
%E Edited by _G. C. Greubel_, Feb 06 2022