|
|
A142463
|
|
a(n) = 2*n^2 + 2*n - 1.
|
|
29
|
|
|
-1, 3, 11, 23, 39, 59, 83, 111, 143, 179, 219, 263, 311, 363, 419, 479, 543, 611, 683, 759, 839, 923, 1011, 1103, 1199, 1299, 1403, 1511, 1623, 1739, 1859, 1983, 2111, 2243, 2379, 2519, 2663, 2811, 2963, 3119, 3279, 3443, 3611, 3783, 3959, 4139, 4323, 4511, 4703, 4899, 5099
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Essentially the same as A132209
From Vincenzo Librandi, Nov 25 2010: (Start)
Numbers k such that 2*k+3 is square.
First diagonal of A144562. (End)
|
|
LINKS
|
Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
|
|
FORMULA
|
a(n) = a(n-1) + 4*n.
From Paul Barry, Nov 03 2009: (Start)
G.f.: (1 - 6*x + x^2)/(1-x)^3.
a(n) = 4*C(n+1,2) - 1. (End)
a(n) = - A188653(2*n+1). - Reinhard Zumkeller, Apr 13 2011
a(n) = 3*( Sum_{k=1..n} k^5 )/( Sum_{k=1..n} k^3 ), n>0. - Gary Detlefs, Oct 18 2011
a(n) = (A005408(n)^2 - 3)/2. - Zhandos Mambetaliyev, Feb 11 2017
E.g.f.: (-1 + 4*x + 2*x^2)*exp(x). - G. C. Greubel, Mar 01 2021
|
|
MAPLE
|
A142463:= n-> 2*n^2 +2*n -1; seq(A142463(n), n=0..50); # G. C. Greubel, Mar 01 2021
|
|
MATHEMATICA
|
Array[ -#*(2-#*2)-1&, 5!, 1] (* Vladimir Joseph Stephan Orlovsky, Dec 21 2008 *)
|
|
PROG
|
(MAGMA) [2*n^2+2*n-1: n in [0..100]]
(PARI) a(n)=2*n^2+2*n-1 \\ Charles R Greathouse IV, Sep 24 2015
(Sage) [2*n^2 +2*n -1 for n in (0..50)] # G. C. Greubel, Mar 01 2021
|
|
CROSSREFS
|
Cf. A000096, A005408, A132209, A144562, A188653.
Sequence in context: A119173 A106201 A132209 * A289575 A086497 A121509
Adjacent sequences: A142460 A142461 A142462 * A142464 A142465 A142466
|
|
KEYWORD
|
sign,easy,changed
|
|
AUTHOR
|
Roger L. Bagula, Sep 19 2008
|
|
EXTENSIONS
|
Edited by the Associate Editors of the OEIS, Sep 02 2009
|
|
STATUS
|
approved
|
|
|
|