login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144431
Triangle read by rows: T(n,k) (1 <= k <= n) given by T(n,1) = T(n,n) = 1, otherwise T(n, k) = (m*n-m*k+1)*T(n-1,k-1) + (m*k-m+1)*T(n-1,k), where m = -1.
21
1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -2, 2, -2, 1, 1, -3, 2, 2, -3, 1, 1, -4, 7, -8, 7, -4, 1, 1, -5, 9, -5, -5, 9, -5, 1, 1, -6, 16, -26, 30, -26, 16, -6, 1, 1, -7, 20, -28, 14, 14, -28, 20, -7, 1, 1, -8, 29, -64, 98, -112, 98, -64, 29, -8, 1, 1, -9, 35, -75, 90, -42, -42, 90, -75, 35, -9, 1
OFFSET
1,12
COMMENTS
Row sums are: {1, 2, 2, 0, 0, 0, 0, 0, 0, 0, ...}.
For m = ...,-1,0,1,2 we get ..., A144431, A007318 (Pascal), A008292, A060187, ..., so this might be called a sub-Pascal triangle.
The triangle starts off like A098593, but is different further on.
LINKS
Robert Coquereaux and Jean-Bernard Zuber, Counting partitions by genus. II. A compendium of results, arXiv:2305.01100 [math.CO], 2023. See p. 8.
FORMULA
T(n,k) = (m*n - m*k + 1)*T(n-1, k-1) + (m*k - (m-1))*T(n-1, k) with T(n, 1) = T(n, n) = 1 and m = -1.
From G. C. Greubel, Mar 01 2022: (Start)
T(n, n-k) = T(n, k).
T(n, k) = (-1)^(k-1)*binomial(n-3, k-1) + (-1)^(n+k)*binomial(n-3, k-3) with T(1, k) = T(2, k) = 1.
Sum_{k=1..n} T(n, k) = [n==1] + 2*[n==2] + 2*[n==3] + (1-(-1)^n)*0^(n-3)*[n>3]. (End)
EXAMPLE
Triangle begins:
1;
1, 1;
1, 0, 1;
1, -1, -1, 1;
1, -2, 2, -2, 1;
1, -3, 2, 2, -3, 1;
1, -4, 7, -8, 7, -4, 1;
1, -5, 9, -5, -5, 9, -5, 1;
1, -6, 16, -26, 30, -26, 16, -6, 1;
1, -7, 20, -28, 14, 14, -28, 20, -7, 1;
...
MAPLE
T:=proc(n, k, l) option remember;
if (n=1 or k=1 or k=n) then 1 else
(l*n-l*k+1)*T(n-1, k-1, l)+(l*k-l+1)*T(n-1, k, l); fi; end;
for n from 1 to 15 do lprint([seq(T(n, k, -1), k=1..n)]); od; # N. J. A. Sloane, May 08 2013
MATHEMATICA
m=-1;
T[n_, 1]:= 1; T[n_, n_]:= 1;
T[n_, k_]:= (m*n-m*k+1)*T[n-1, k-1] + (m*k - (m - 1))*T[n-1, k];
Table[T[n, k], {n, 15}, {k, n}]//Flatten
PROG
(Sage)
def A144431(n, k):
if (n<3): return 1
else: return (-1)^(k-1)*binomial(n-3, k-1) + (-1)^(n+k)*binomial(n-3, k-3)
flatten([[A144431(n, k) for k in (1..n)] for n in (1..15)]) # G. C. Greubel, Mar 01 2022
CROSSREFS
KEYWORD
tabl,easy,sign
AUTHOR
Roger L. Bagula, Oct 04 2008
EXTENSIONS
Edited by N. J. A. Sloane, May 08 2013
STATUS
approved