login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A098593
A triangle of Krawtchouk coefficients.
15
1, 1, 1, 1, 0, 1, 1, -1, -1, 1, 1, -2, -2, -2, 1, 1, -3, -2, -2, -3, 1, 1, -4, -1, 0, -1, -4, 1, 1, -5, 1, 3, 3, 1, -5, 1, 1, -6, 4, 6, 6, 6, 4, -6, 1, 1, -7, 8, 8, 6, 6, 8, 8, -7, 1, 1, -8, 13, 8, 2, 0, 2, 8, 13, -8, 1, 1, -9, 19, 5, -6, -10, -10, -6, 5, 19, -9, 1, 1, -10, 26, -2, -17, -20, -20, -20, -17, -2, 26, -10, 1, 1, -11, 34, -14, -29, -25
OFFSET
0,12
COMMENTS
Row sums are A009545(n+1), with e.g.f. exp(x)(cos(x)+sin(x)). Diagonal sums are A077948.
The rows are the diagonals of the Krawtchouk matrices. Coincides with the Riordan array (1/(1-x),(1-2x)/(1-x)). - Paul Barry, Sep 24 2004
Corresponds to Pascal-(1,-2,1) array, read by antidiagonals. The Pascal-(1,-2,1) array has n-th row generated by (1-2x)^n/(1-x)^(n+1). - Paul Barry, Sep 24 2004
A modified version (different signs) of this triangle is given by T(n,k) = Sum_{j=0..n} C(n-k,j)*C(k,j)*cos(Pi*(k-j)). - Paul Barry, Jun 14 2007
REFERENCES
P. Feinsilver and J. Kocik, Krawtchouk matrices from classical and quantum walks, Contemporary Mathematics, 287 2001, pp. 83-96.
LINKS
Paul Barry, A note on Krawtchouk Polynomials and Riordan Arrays, JIS 11 (2008) 08.2.2
P. Feinsilver and J. Kocik, Krawtchouk polynomials and Krawtchouk matrices, arxiv:quant-ph/0702073, 2007.
FORMULA
T(n, k) = Sum_{i=0..k} binomial(n-k, k-i)*binomial(k, i)*(-1)^(k-i), k<=n.
T(n, k) = T(n-1, k) + T(n-1, k-1) - 2*T(n-2, k-1) (n>0). - Paul Barry, Sep 24 2004
T(n, k) = [k<=n]*Hypergeometric2F1(-k,k-n;1;-1). - Paul Barry, Jan 24 2011
E.g.f. for the n-th subdiagonal: exp(x)*P(n,x), where P(n,x) is the polynomial Sum_{k = 0..n} (-1)^k*binomial(n,k)* x^k/k!. For example, the e.g.f. for the second subdiagonal is exp(x)*(1 - 2*x + x^2/2) = 1 - x - 2*x^2/2! - 2*x^3/3! - x^4/4! + x^5/5! + .... - Peter Bala, Mar 05 2017
EXAMPLE
Rows begin {1}, {1,1}, {1,0,1}, {1,-1,-1,1}, {1,-2,-2,-2,1}, ...
From Paul Barry, Oct 05 2010: (Start)
Triangle begins
1,
1, 1,
1, 0, 1,
1, -1, -1, 1,
1, -2, -2, -2, 1,
1, -3, -2, -2, -3, 1,
1, -4, -1, 0, -1, -4, 1,
1, -5, 1, 3, 3, 1, -5, 1,
1, -6, 4, 6, 6, 6, 4, -6, 1,
1, -7, 8, 8, 6, 6, 8, 8, -7, 1,
1, -8, 13, 8, 2, 0, 2, 8, 13, -8, 1
Production matrix (related to large Schroeder numbers A006318) begins
1, 1,
0, -1, 1,
0, -2, -1, 1,
0, -6, -2, -1, 1,
0, -22, -6, -2, -1, 1,
0, -90, -22, -6, -2, -1, 1,
0, -394, -90, -22, -6, -2, -1, 1,
0, -1806, -394, -90, -22, -6, -2, -1, 1,
0, -8558, -1806, -394, -90, -22, -6, -2, -1, 1
Production matrix of inverse is
-1, 1,
-2, 1, 1,
-4, 2, 1, 1,
-8, 4, 2, 1, 1,
-16, 8, 4, 2, 1, 1,
-32, 16, 8, 4, 2, 1, 1,
-64, 32, 16, 8, 4, 2, 1, 1,
-128, 64, 32, 16, 8, 4, 2, 1, 1,
-256, 128, 64, 32, 16, 8, 4, 2, 1, 1 (End)
MATHEMATICA
T[n_, k_] := Sum[Binomial[n - k, k - j]*Binomial[k, j]*(-1)^(k - j), {j, 0, n}]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 15 2017 *)
PROG
(PARI) for(n=0, 10, for(k=0, n, print1(sum(i=0, k, binomial(n-k, k-i) *binomial(k, i)*(-1)^(k-i)), ", "))) \\ G. C. Greubel, Oct 15 2017
CROSSREFS
Cf. Pascal (1,m,1) array: A123562 (m = -3), A000012 (m = -1), A007318 (m = 0), A008288 (m = 1), A081577 (m = 2), A081578 (m = 3), A081579 (m = 4), A081580 (m = 5), A081581 (m = 6), A081582 (m = 7), A143683 (m = 8).
Sequence in context: A245514 A104754 A206827 * A144431 A053821 A076545
KEYWORD
easy,sign,tabl
AUTHOR
Paul Barry, Sep 17 2004
STATUS
approved