login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of transitive reflexive early confluent binary relations R on n+2 labeled elements with max_{x}(|{y : xRy}|) = n.
2

%I #21 Nov 20 2021 10:01:49

%S 0,1,61,1105,16025,239379,3794378,64432638,1173919350,22913136730,

%T 477859512889,10616510910603,250501631648359,6259150585043685,

%U 165157651772590340,4590337237739801932,134066099253229461636,4105495811166963962292,131552972087266209052875

%N Number of transitive reflexive early confluent binary relations R on n+2 labeled elements with max_{x}(|{y : xRy}|) = n.

%H Alois P. Heinz, <a href="/A218112/b218112.txt">Table of n, a(n) for n = 0..200</a> (terms n=23..100 from Vincenzo Librandi)

%F a(n) = A135313(n+2,n).

%F a(n) ~ n! * n^4 / (16 * log(2)^(n+3)). - _Vaclav Kotesovec_, Nov 20 2021

%p t:= proc(k) option remember; `if`(k<0, 0, unapply(exp(add(x^m/m! *t(k-m)(x), m=1..k)), x)) end: tt:= proc(k) option remember; unapply((t(k)-t(k-1))(x), x) end: T:= proc(n, k) option remember; coeff(series(tt(k)(x), x, n+1), x, n) *n! end:

%p a:= n-> T(n+2,n): seq(a(n), n=0..20);

%t t[k_] := t[k] = If[k < 0, 0&, Function[x, Evaluate @ Normal[Series[Exp[Sum[x^m/m!*t[k-m][x], {m, 1, k}]], {x, 0, k+3}]]]]; tt[k_] := tt[k] = Function[x, (t[k][x]-t[k-1][x]) // Evaluate]; T[n_, k_] := T[n, k] = Coefficient[Series[tt[k][x], {x, 0, n+1}], x, n]*n!; a[n_] := a[n] = T[n+2, n]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Feb 17 2014, after Maple *)

%K nonn

%O 0,3

%A _Alois P. Heinz_, Oct 20 2012