|
|
A290775
|
|
Number of 5-cycles in the n-triangular honeycomb bishop graph.
|
|
3
|
|
|
0, 0, 2, 24, 138, 532, 1596, 4032, 8988, 18216, 34254, 60632, 102102, 164892, 256984, 388416, 571608, 821712, 1156986, 1599192, 2174018, 2911524, 3846612, 5019520, 6476340, 8269560, 10458630, 13110552, 16300494, 20112428, 24639792, 29986176, 36266032, 43605408, 52142706
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 2/5 * binomial(n + 1, 4)*(8 - 7*n + 2*n^2).
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
G.f.: -((2 x (x^2 + 5 x^3 + 6 x^4))/(-1 + x)^7).
|
|
MATHEMATICA
|
Table[2/5 Binomial[n + 1, 4] (8 - 7 n + 2 n^2), {n, 20}]
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {0, 0, 2, 24, 138, 532, 1596}, 20]
CoefficientList[Series[-((2 (x^2 + 5 x^3 + 6 x^4))/(-1 + x)^7), {x, 0, 20}], x]
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|