login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A282080
Number of n-element subsets of [n+4] having an even sum.
2
1, 2, 6, 19, 38, 60, 100, 170, 255, 350, 490, 693, 924, 1176, 1512, 1956, 2445, 2970, 3630, 4455, 5346, 6292, 7436, 8814, 10283, 11830, 13650, 15785, 18040, 20400, 23120, 26248, 29529, 32946, 36822, 41211, 45790, 50540, 55860, 61810, 67991, 74382, 81466, 89309
OFFSET
0,2
LINKS
Index entries for linear recurrences with constant coefficients, signature (5,-13,25,-38,46,-46,38,-25,13,-5,1).
FORMULA
G.f.: -(x^2-x+1)*(x^4-2*x^3+6*x^2-2*x+1)/((x^2+1)^3*(x-1)^5).
a(n) = A282011(n+4,n).
a(n) = (2*(1+n)*(2+n)*(3+n)*(4+n) + 3*(-i*(-i)^n*((3+8*i) + (4+6*i)*n + (1+i)*n^2) + i^n*((8+3*i) + (6+4*i)*n + (1+i)*n^2)))/96 where i=sqrt(-1). - Colin Barker, Feb 06 2017
EXAMPLE
a(2) = 6: {1,3}, {1,5}, {2,4}, {2,6}, {3,5}, {4,6}.
a(3) = 19: {1,2,3}, {1,2,5}, {1,2,7}, {1,3,4}, {1,3,6}, {1,4,5}, {1,4,7}, {1,5,6}, {1,6,7}, {2,3,5}, {2,3,7}, {2,4,6}, {2,5,7}, {3,4,5}, {3,4,7}, {3,5,6}, {3,6,7}, {4,5,7}, {5,6,7}.
MATHEMATICA
CoefficientList[Series[-(x^2 - x + 1)*(x^4 - 2*x^3 + 6*x^2 - 2*x + 1)/((x^2 + 1)^3*(x - 1)^5), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jan 01 2024 *)
PROG
(PARI) Vec(-(x^2-x+1)*(x^4-2*x^3+6*x^2-2*x+1)/((x^2+1)^3*(x-1)^5) + O(x^90)) \\ Colin Barker, Feb 06 2017
CROSSREFS
Cf. A282011.
Sequence in context: A227884 A186769 A213400 * A273180 A280041 A058081
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Feb 05 2017
STATUS
approved