Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jan 01 2024 20:05:34
%S 1,2,6,19,38,60,100,170,255,350,490,693,924,1176,1512,1956,2445,2970,
%T 3630,4455,5346,6292,7436,8814,10283,11830,13650,15785,18040,20400,
%U 23120,26248,29529,32946,36822,41211,45790,50540,55860,61810,67991,74382,81466,89309
%N Number of n-element subsets of [n+4] having an even sum.
%H Alois P. Heinz, <a href="/A282080/b282080.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_11">Index entries for linear recurrences with constant coefficients</a>, signature (5,-13,25,-38,46,-46,38,-25,13,-5,1).
%F G.f.: -(x^2-x+1)*(x^4-2*x^3+6*x^2-2*x+1)/((x^2+1)^3*(x-1)^5).
%F a(n) = A282011(n+4,n).
%F a(n) = (2*(1+n)*(2+n)*(3+n)*(4+n) + 3*(-i*(-i)^n*((3+8*i) + (4+6*i)*n + (1+i)*n^2) + i^n*((8+3*i) + (6+4*i)*n + (1+i)*n^2)))/96 where i=sqrt(-1). - _Colin Barker_, Feb 06 2017
%e a(2) = 6: {1,3}, {1,5}, {2,4}, {2,6}, {3,5}, {4,6}.
%e a(3) = 19: {1,2,3}, {1,2,5}, {1,2,7}, {1,3,4}, {1,3,6}, {1,4,5}, {1,4,7}, {1,5,6}, {1,6,7}, {2,3,5}, {2,3,7}, {2,4,6}, {2,5,7}, {3,4,5}, {3,4,7}, {3,5,6}, {3,6,7}, {4,5,7}, {5,6,7}.
%t CoefficientList[Series[-(x^2 - x + 1)*(x^4 - 2*x^3 + 6*x^2 - 2*x + 1)/((x^2 + 1)^3*(x - 1)^5), {x, 0, 50}], x] (* _Wesley Ivan Hurt_, Jan 01 2024 *)
%o (PARI) Vec(-(x^2-x+1)*(x^4-2*x^3+6*x^2-2*x+1)/((x^2+1)^3*(x-1)^5) + O(x^90)) \\ _Colin Barker_, Feb 06 2017
%Y Cf. A282011.
%K nonn,easy
%O 0,2
%A _Alois P. Heinz_, Feb 05 2017