login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227884
Number T(n,k) of permutations of [n] with exactly k (possibly overlapping) occurrences of the consecutive step pattern up, down, up; triangle T(n,k), n>=0, 0<=k<=max(0,floor(n/2)-1), read by rows.
5
1, 1, 2, 6, 19, 5, 70, 50, 331, 328, 61, 1863, 2154, 1023, 11637, 16751, 10547, 1385, 81110, 144840, 102030, 34900, 635550, 1314149, 1109973, 518607, 50521, 5495339, 12735722, 13046040, 6858598, 1781101, 51590494, 134159743, 157195762, 97348436, 36004400
OFFSET
0,3
LINKS
EXAMPLE
T(4,1) = 5: 1324, 1423, 2314, 2413, 3412.
Triangle T(n,k) begins:
: 0 : 1;
: 1 : 1;
: 2 : 2;
: 3 : 6;
: 4 : 19, 5;
: 5 : 70, 50;
: 6 : 331, 328, 61;
: 7 : 1863, 2154, 1023;
: 8 : 11637, 16751, 10547, 1385;
: 9 : 81110, 144840, 102030, 34900;
: 10 : 635550, 1314149, 1109973, 518607, 50521;
MAPLE
b:= proc(u, o, t) option remember; `if`(u+o=0, 1, expand(
add(b(u-j, o+j-1, [1, 3, 1][t]), j=1..u)+
add(b(u+j-1, o-j, 2)*`if`(t=3, x, 1), j=1..o)))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0, 1)):
seq(T(n), n=0..15);
MATHEMATICA
b[u_, o_, t_] := b[u, o, t] = If[u+o==0, 1, Expand[Sum[b[u-j, o+j-1, {1, 3, 1}[[t]]], {j, 1, u}]+Sum[b[u+j-1, o-j, 2]*If[t==3, x, 1], {j, 1, o}]]];
T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][ b[n, 0, 1]];
Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Mar 29 2017, translated from Maple *)
CROSSREFS
Columns k=0-1 give: A177477, A227883.
T(2n,n-1) gives A000364(n) for n>=2.
Row sums give: A000142.
Sequence in context: A262971 A253380 A128123 * A186769 A213400 A282080
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Oct 25 2013
STATUS
approved