login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227886
G.f. A(x) satisfies: prime(n-1) iteration of A(x) yields a zero coefficient of x^n for n>2.
1
1, 1, -2, 6, -24, -820, 27144, -1291488, 59107938, -3469468244, -551251146312, 110380085358300, -14603070221993568, 1245952635117666628, 29007906387788967008, -20843885535528328473491, -180339645015007436197752, 127321605693530805940344950, 281613877399819446654643101264
OFFSET
1,3
LINKS
EXAMPLE
G.f.: A(x) = x + x^2 - 2*x^3 + 6*x^4 - 24*x^5 - 820*x^6 + 27144*x^7 +...
Coefficients in the prime iterations of A(x) begin:
[1, 2, -2, 3, -10, -1818, 47740, -2337494, 105376812, ...];
[1, 3, 0, -3, 0, -2772, 60624, -3189473, 140910696, ...];
[1, 5, 10, 0, -40, -4650, 64048, -4546444, 185930620, ...];
[1, 7, 28, 63, 0, -6958, 36288, -5825281, 201609418, ...];
[1, 11, 88, 561, 2816, 0, -88880, -10110089, 134676036, ...];
[1, 13, 130, 1092, 7800, 34658, 0, -13180700, 29207048, ...];
[1, 17, 238, 2958, 33320, 327012, 2674984, 0, -240789190, ...];
[1, 19, 304, 4389, 58368, 703988, 7570512, 51417135, 0, ...];
[1, 23, 460, 8487, 147200, 2401338, 36774976, 501489263, 5774993410, 0, ...]; ...
where the coefficient of x^n in the prime(n-1) iteration of A(x) equals zero for n>2.
PROG
(PARI) {ITERATION(n, F)=local(G=x); for(i=1, n, G=subst(G, x, F)); G}
{a(n)=local(A=[1, 1]); for(i=1, n, A=concat(A, 0); A[#A]=-Vec(ITERATION(prime(#A-1), x*Ser(A)))[#A]/prime(#A-1)); A[n]}
for(n=1, 30, print1(a(n), ", "))
CROSSREFS
Sequence in context: A061774 A110729 A088258 * A290961 A089718 A123150
KEYWORD
sign
AUTHOR
Paul D. Hanna, Oct 25 2013
STATUS
approved