OFFSET
1,1
COMMENTS
Are there terms not divisible by 6?
All the displayed terms are an odd multiple of 6, and up to a few exceptions of the form a(n)=6*p*q, where p,q have the same odd Hamming weight H(p) = H(q) >= 7. - M. F. Hasler, Oct 27 2013
FORMULA
Common value of the considered sums of divisors is (A000203(a(n))-a(n))/2.
EXAMPLE
6 has odious divisors 1,2 and proper evil divisor 3. Since 1+2=3, then 6 is in the sequence.
PROG
(PARI) for(n=4, 1458081714, if(isprime(n), next); nd=numdiv(n); if(nd>3, d=divisors(n); se=0; so=1; for(j=2, nd-1, if(hammingweight(d[j])%2==0, se=se+d[j], so=so+d[j])); if(se==so, print1(n ", ")))) /* Donovan Johnson, Oct 26 2013 */
(PARI) is(n, d=divisors(n))={sum(j=2, #d-1, (-1)^hammingweight(d[j])*d[j])==1} \\ - M. F. Hasler, Oct 27 2013
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Vladimir Shevelev and Peter J. C. Moses, Oct 26 2013
EXTENSIONS
a(5)-a(26) from Donovan Johnson, Oct 26 2013
STATUS
approved