login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A227890
Primes of the form prime(k)^2 - k.
1
3, 7, 163, 353, 5021, 12739, 32719, 49681, 52391, 78901, 113501, 252913, 361091, 452807, 551917, 993841, 1559797, 1956979, 2193127, 3463037, 4067983, 5003837, 5138953, 6115363, 6723271, 7251857, 7447043, 7578607, 8426989, 9479801, 11295847, 12186593, 12439237
OFFSET
1,1
LINKS
EXAMPLE
a(3)= 163: prime(6)^2 - 6= 13^2 - 6= 169 - 6= 163 which is prime.
a(4)= 353: prime(8)^2 - 8= 19^2 - 8= 361 - 8= 353 which is prime.
MAPLE
with(numtheory):KD := proc() local a; a:= (ithprime(k)^2-k); if isprime(a) then RETURN (a); fi; end: seq(KD(), k=1..1000);
MATHEMATICA
Select[Table[Prime[k]^2-k, {k, 1000}], PrimeQ]
PROG
(PARI) for(k=1, 10^5, if(ispseudoprime(KD=((prime(k)^2-k))), print1(KD", ")));
CROSSREFS
Cf. A000040 (prime numbers).
Cf. A064713 (for the integers k).
Cf. A184935 (primes: k^2 + prime(k)).
Cf. A188831 (primes: k^2 - prime(k)).
Cf. A229203 (primes: k^3 - prime(k)).
Sequence in context: A275195 A031881 A264931 * A114789 A128273 A105763
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Oct 26 2013
STATUS
approved