login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188831
Primes of the form k^2 - prime(k).
5
23, 71, 107, 263, 487, 677, 787, 1427, 1583, 2081, 3319, 5393, 8713, 10247, 11071, 12377, 18257, 20477, 24659, 26573, 29243, 29927, 33487, 34949, 37223, 37991, 41981, 51449, 60917, 64937, 66977, 71167, 83357, 85667, 99013, 100271, 109313, 110629, 118757
OFFSET
1,1
COMMENTS
Or, primes in A073497. Corresponding values of k in A064712.
This is to A073497 and A064712 as A184935 is to A004232 and A064711.
The two primes prime(k) and k^2-prime(k) are a Goldbach partition of k^2. - T. D. Noe, Apr 14 2011
FORMULA
a(n) = A073497(A064712(n)).
EXAMPLE
23 is here because 6^2 - prime(6) = 36 - 13 = 23.
MATHEMATICA
Select[Table[k^2 - Prime[k], {k, 1000}], PrimeQ] (* T. D. Noe, Apr 14 2011 *)
PROG
(Magma) [ a: k in [0..10000] | IsPrime(a) where a is k^2-NthPrime(k) ]; // Vincenzo Librandi, Apr 14 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Zak Seidov, Apr 11 2011
STATUS
approved