login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A242676 a(n) = Abs(StirlingS1(4*n,n)). 2
1, 6, 13068, 150917976, 5056995703824, 371384787345228000, 50779532534302850198976, 11616723683566425573507775872, 4123257155075936045020928754053376, 2146734309994687055429549444238169536000, 1569808063009967047226374755685187772671339520 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Generally, for p>=2 is Abs(StirlingS1(p*n,n)) asymptotic to n^((p-1)*n) * c^(p*n) * p^((2*p-1)*n) / (sqrt(2*Pi*p*(c-1)*n) * exp((p-1)*n) * (c*p-1)^((p-1)*n)), where c = -LambertW(-1,-exp(-1/p)/p).

LINKS

Table of n, a(n) for n=0..10.

FORMULA

a(n) ~ n^(3*n) * c^(4*n) * 2^(14*n-1) / (sqrt(2*Pi*(c-1)*n) * exp(3*n) * (4*c-1)^(3*n)), where c = -LambertW(-1,-exp(-1/4)/4) = 2.58666298226305388118285...

MAPLE

seq(abs(Stirling1(4*n, n)), n=0..20);

MATHEMATICA

Table[Abs[StirlingS1[4*n, n]], {n, 0, 20}]

CROSSREFS

Cf. A187646, A237993, A217914.

Sequence in context: A261823 A146202 A227889 * A145720 A093897 A062782

Adjacent sequences:  A242673 A242674 A242675 * A242677 A242678 A242679

KEYWORD

nonn,easy

AUTHOR

Vaclav Kotesovec, May 20 2014

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 06:51 EST 2020. Contains 338944 sequences. (Running on oeis4.)