login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187646
(Signless) Central Stirling numbers of the first kind s(2n,n).
20
1, 1, 11, 225, 6769, 269325, 13339535, 790943153, 54631129553, 4308105301929, 381922055502195, 37600535086859745, 4070384057007569521, 480544558742733545125, 61445535102359115635655, 8459574446076318147830625, 1247677142707273537964543265, 196258640868140652967646352465
OFFSET
0,3
COMMENTS
Number of permutations with n cycles on a set of size 2n.
LINKS
FORMULA
Asymptotic: a(n) ~ (2*n/(e*z*(1-z)))^n*sqrt((1-z)/(2*Pi*n*(2z-1))), where z=0.715331862959... is a root of the equation z = 2*(z-1)*log(1-z). - Vaclav Kotesovec, May 30 2011
MAPLE
seq(abs(Stirling1(2*n, n)), n=0..20);
MATHEMATICA
Table[Abs[StirlingS1[2n, n]], {n, 0, 12}]
N[1 + 1/(2 LambertW[-1, -Exp[-1/2]/2]), 50] (* The constant z in the asymptotic - Vladimir Reshetnikov, Oct 08 2016 *)
PROG
(Maxima) makelist(abs(stirling1(2*n, n)), n, 0, 12);
(PARI) for(n=0, 50, print1(abs(stirling(2*n, n, 1)), ", ")) \\ G. C. Greubel, Nov 09 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Mar 12 2011
STATUS
approved