login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187235
Number of ways to place n nonattacking semi-bishops on an n X n board.
20
1, 5, 51, 769, 15345, 381065, 11323991, 391861841, 15476988033, 687029386845, 33861652925595, 1834814222811361, 108411291759763681, 6936921762461326545, 477881176664541171375, 35264213540563039871265, 2775185864375851234241985, 232010235620834821000259765, 20534530616200868936398461635
OFFSET
1,2
COMMENTS
Two semi-bishops do not attack each other if they are in the same NorthWest-SouthEast diagonal.
Conjecture: Number of parity preserving permutations of the set {1, 2, ..., 2n+1} with exactly n+1 cycles (see A246117). - Peter Luschny, Feb 09 2015
LINKS
V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 260-265.
FORMULA
a(n)/(n-1)! ~ 0.24252191 * 4.9108149^n where the second constant is 1/(z*(1-z)) = 4.910814964..., where z=0.715331862959... is a root of the equation z=2*(z-1)*log(1-z).
For constants see A238261 and A238262. - Vaclav Kotesovec, Feb 21 2014
a(n) = (-1)^n * Sum_{i=0..n} Stirling1(n,i) * Stirling1(n+1,n-i+1). - Ryan Brooks, May 09 2020
MATHEMATICA
Table[If[n==1, 1, Coefficient[Expand[Product[x+i, {i, 1, n}]*Product[x+i, {i, 1, n-1}], x], x, n-1]], {n, 1, 50}]
Table[(-1)^n*Sum[StirlingS1[n+1, j]*StirlingS1[n, n-j+1], {j, 1, n}], {n, 1, 50}] (* Explicit formula, Vaclav Kotesovec, Mar 24 2011 *)
PROG
(PARI) a(n) = {(-1)^n*sum(i=0, n, stirling(n, i, 1) * stirling(n+1, n-i+1, 1))} \\ Andrew Howroyd, May 09 2020
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Vaclav Kotesovec, Mar 08 2011
STATUS
approved