OFFSET
1,2
COMMENTS
Two semi-bishops do not attack each other if they are in the same NorthWest-SouthEast diagonal.
Conjecture: Number of parity preserving permutations of the set {1, 2, ..., 2n+1} with exactly n+1 cycles (see A246117). - Peter Luschny, Feb 09 2015
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 1..350
V. Kotesovec, Non-attacking chess pieces, 6ed, 2013, p. 260-265.
FORMULA
a(n)/(n-1)! ~ 0.24252191 * 4.9108149^n where the second constant is 1/(z*(1-z)) = 4.910814964..., where z=0.715331862959... is a root of the equation z=2*(z-1)*log(1-z).
a(n) = (-1)^n * Sum_{i=0..n} Stirling1(n,i) * Stirling1(n+1,n-i+1). - Ryan Brooks, May 09 2020
MATHEMATICA
Table[If[n==1, 1, Coefficient[Expand[Product[x+i, {i, 1, n}]*Product[x+i, {i, 1, n-1}], x], x, n-1]], {n, 1, 50}]
Table[(-1)^n*Sum[StirlingS1[n+1, j]*StirlingS1[n, n-j+1], {j, 1, n}], {n, 1, 50}] (* Explicit formula, Vaclav Kotesovec, Mar 24 2011 *)
PROG
(PARI) a(n) = {(-1)^n*sum(i=0, n, stirling(n, i, 1) * stirling(n+1, n-i+1, 1))} \\ Andrew Howroyd, May 09 2020
CROSSREFS
KEYWORD
nonn,nice
AUTHOR
Vaclav Kotesovec, Mar 08 2011
STATUS
approved