|
|
A145162
|
|
G.f. A(x) satisfies A(x/A(x)^4) = 1/(1-x).
|
|
6
|
|
|
1, 1, 5, 51, 757, 14058, 303443, 7313188, 192096189, 5413972155, 161972306602, 5104569475976, 168500227127871, 5800706769824992, 207552636468976072, 7697809237540240440, 295284422299359774761, 11693774821978063710405
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..17.
|
|
FORMULA
|
G.f. satisfies: 1 - 1/A(x) = x*A( 1 - 1/A(x) )^4.
Self-convolution square yields A145163.
Self-convolution 4th power yields A145164.
|
|
PROG
|
(PARI) {a(n)=local(A=1+x+x*O(x^n), B); for(n=0, n, B=serreverse(x/A^4); A=1/(1-B)); polcoeff(A, n)}
|
|
CROSSREFS
|
Cf. A145163 (A^2), A145164 (A^4); A088713, A145158, A145160, A145165, A145167.
Sequence in context: A190734 A154886 A268138 * A187235 A318192 A299435
Adjacent sequences: A145159 A145160 A145161 * A145163 A145164 A145165
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Paul D. Hanna, Oct 03 2008
|
|
STATUS
|
approved
|
|
|
|