login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268138
a(n) = (Sum_{k=0..n-1} A001850(k)*A001003(k+1))/n.
3
1, 5, 51, 747, 13245, 264329, 5721415, 131425079, 3159389817, 78729848397, 2019910325499, 53087981674275, 1423867359013749, 38855956977763857, 1076297858301372687, 30203970496501504239, 857377825323716359665, 24586286492003180067989, 711463902659879056604995, 20756358426519694831851227
OFFSET
1,2
COMMENTS
Conjecture: (i) All the terms are odd integers. Also, p | a(p) for any odd prime p.
(ii) Let D_n(x) = Sum_{k=0..n} binomial(n,k)*binomial(n+k,k)*x^k = Sum_{k=0..n} binomial(n,k)^2*x^k*(x+1)^(n-k) for n >= 0, and s_n(x) = Sum_{k=1..n} (binomial(n,k)*binomial(n,k-1)/n)*x^(k-1)*(x+1)^(n-k) = (Sum_{k=0..n} binomial(n,k)*binomial(n+k,k)*x^k/(k+1))/(x+1) for n > 0. Then, for any positive integer n, all the coefficients of the polynomial (1/n)*Sum_{k=0..n-1} D_k(x)*s_{k+1}(x) are integral and the polynomial is irreducible over the field of rational numbers.
The conjecture was essentially proved by the author in arXiv:1602.00574, except for the irreducibility of (Sum_{k=0..n-1} D_k(x)*s_{k+1}(x))/n. - Zhi-Wei Sun, Feb 01 2016
LINKS
Zhi-Wei Sun, On Delannoy numbers and Schroder numbers, J. Number Theory 131(2011), no.12, 2387-2397.
Zhi-Wei Sun, Arithmetic properties of Delannoy numbers and Schröder numbers, preprint, arXiv:1602.00574 [math.CO], 2016.
FORMULA
a(n) = ((3*(2*n+1)*A001850(n)*A001850(n-1) - n*A001850(n-1)^2)/(n+1) - A001850(n)^2)/4. - Mark van Hoeij, Nov 12 2022
G.f.: (1-(1+1/x)*Int((1-34*x+x^2)^(1/2) * hypergeom([-1/2,1/2],[1], -32*x/(1-34*x+x^2))/((1-x)*(1+x)^2),x))/4. - Mark van Hoeij, Nov 28 2024
EXAMPLE
a(3) = 51 since (A001850(0)*A001003(1) + A001850(1)*A001003(2) + A001850(2)*A001003(3))/3 = (1*1 + 3*3 + 13*11)/3 = 153/3 = 51.
MAPLE
A001850 := n -> LegendreP(n, 3); seq(((3*(2*n+1)*A001850(n)*A001850(n-1)-n*A001850(n-1)^2)/(n+1) - A001850(n)^2)/4, n=1..20); # Mark van Hoeij, Nov 12 2022
# Alternative (which also gives an integer for n = 0):
f := n -> hypergeom([-n, -n], [1], 2): # A001850
h := n -> hypergeom([-n, n], [1], 2): # A182626
g := n -> hypergeom([-n, n, 1/2], [1, 1], -8): # A358388
a := n -> (f(n)*((3*n + 1)*f(n) - (-1)^n*(6*n + 3)*h(n)) - n*g(n))/(2*n + 2):
seq(simplify(a(n)), n = 1..20); # Peter Luschny, Nov 13 2022
MATHEMATICA
d[n_]:=Sum[Binomial[n, k]Binomial[n+k, k], {k, 0, n}]
s[n_]:=Sum[Binomial[n, k]Binomial[n, k-1]/n*2^(k-1), {k, 1, n}]
a[n_]:=Sum[d[k]s[k+1], {k, 0, n-1}]/n
Table[a[n], {n, 1, 20}]
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 26 2016
STATUS
approved