OFFSET
1,2
COMMENTS
Conjecture: (i) All the terms are odd integers. Also, p | a(p) for any odd prime p.
(ii) Let D_n(x) = Sum_{k=0..n} binomial(n,k)*binomial(n+k,k)*x^k = Sum_{k=0..n} binomial(n,k)^2*x^k*(x+1)^(n-k) for n >= 0, and s_n(x) = Sum_{k=1..n} (binomial(n,k)*binomial(n,k-1)/n)*x^(k-1)*(x+1)^(n-k) = (Sum_{k=0..n} binomial(n,k)*binomial(n+k,k)*x^k/(k+1))/(x+1) for n > 0. Then, for any positive integer n, all the coefficients of the polynomial (1/n)*Sum_{k=0..n-1} D_k(x)*s_{k+1}(x) are integral and the polynomial is irreducible over the field of rational numbers.
The conjecture was essentially proved by the author in arXiv:1602.00574, except for the irreducibility of (Sum_{k=0..n-1} D_k(x)*s_{k+1}(x))/n. - Zhi-Wei Sun, Feb 01 2016
LINKS
Zhi-Wei Sun, Table of n, a(n)for n = 1..100
Zhi-Wei Sun, On Delannoy numbers and Schroder numbers, J. Number Theory 131(2011), no.12, 2387-2397.
Zhi-Wei Sun, Arithmetic properties of Delannoy numbers and Schröder numbers, preprint, arXiv:1602.00574 [math.CO], 2016.
FORMULA
a(n) = ((3*(2*n+1)*A001850(n)*A001850(n-1) - n*A001850(n-1)^2)/(n+1) - A001850(n)^2)/4. - Mark van Hoeij, Nov 12 2022
G.f.: (1-(1+1/x)*Int((1-34*x+x^2)^(1/2) * hypergeom([-1/2,1/2],[1], -32*x/(1-34*x+x^2))/((1-x)*(1+x)^2),x))/4. - Mark van Hoeij, Nov 28 2024
EXAMPLE
MAPLE
A001850 := n -> LegendreP(n, 3); seq(((3*(2*n+1)*A001850(n)*A001850(n-1)-n*A001850(n-1)^2)/(n+1) - A001850(n)^2)/4, n=1..20); # Mark van Hoeij, Nov 12 2022
# Alternative (which also gives an integer for n = 0):
f := n -> hypergeom([-n, -n], [1], 2): # A001850
h := n -> hypergeom([-n, n], [1], 2): # A182626
g := n -> hypergeom([-n, n, 1/2], [1, 1], -8): # A358388
a := n -> (f(n)*((3*n + 1)*f(n) - (-1)^n*(6*n + 3)*h(n)) - n*g(n))/(2*n + 2):
seq(simplify(a(n)), n = 1..20); # Peter Luschny, Nov 13 2022
MATHEMATICA
d[n_]:=Sum[Binomial[n, k]Binomial[n+k, k], {k, 0, n}]
s[n_]:=Sum[Binomial[n, k]Binomial[n, k-1]/n*2^(k-1), {k, 1, n}]
a[n_]:=Sum[d[k]s[k+1], {k, 0, n-1}]/n
Table[a[n], {n, 1, 20}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Jan 26 2016
STATUS
approved