login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268139
Semiprimes of the form 3*n*2^n - 3*n - 2^(2+n) + 4.
0
6, 35, 341, 2159, 6160337, 27787211, 191126044583, 412745898649251217229, 162789115166027506149234835193, 51436190754860636195130229261336259
OFFSET
1,1
LINKS
Ben Green and Terence Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Mathematics, 167 (2008), pp. 481-547. arXiv:math/0404188 [math.NT], 2004-2007.
MATHEMATICA
Select[Table[3 n 2^n - 3 n - 2^(2 + n) + 4, {n, 250}], PrimeOmega[#] == 2 &]
PROG
(Magma) IsSemiprime:= func<n | &+[d[2]: d in Factorization(n)] eq 2>; [s: n in [2..240] | IsSemiprime(s) where s is 3*n*2^n-3*n-2^(2+n)+4];
CROSSREFS
KEYWORD
nonn
AUTHOR
Vincenzo Librandi, Jan 27 2016
STATUS
approved