Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #7 Sep 08 2022 08:46:15
%S 6,35,341,2159,6160337,27787211,191126044583,412745898649251217229,
%T 162789115166027506149234835193,51436190754860636195130229261336259
%N Semiprimes of the form 3*n*2^n - 3*n - 2^(2+n) + 4.
%H Ben Green and Terence Tao, <a href="http://arXiv.org/abs/math/0404188">The primes contain arbitrarily long arithmetic progressions</a>, Annals of Mathematics, 167 (2008), pp. 481-547. arXiv:math/0404188 [math.NT], 2004-2007.
%t Select[Table[3 n 2^n - 3 n - 2^(2 + n) + 4, {n, 250}], PrimeOmega[#] == 2 &]
%o (Magma) IsSemiprime:= func<n | &+[d[2]: d in Factorization(n)] eq 2>; [s: n in [2..240] | IsSemiprime(s) where s is 3*n*2^n-3*n-2^(2+n)+4];
%Y Cf. A000043, A001348, A228121, A247147.
%K nonn
%O 1,1
%A _Vincenzo Librandi_, Jan 27 2016