login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088713
G.f. A(x) satisfies A(x/A(x)) = 1/(1-x).
8
1, 1, 2, 6, 24, 118, 674, 4308, 30062, 225266, 1791964, 15009118, 131566314, 1201452248, 11389283418, 111761444078, 1132680800640, 11834071103246, 127261591139010, 1406778021294220, 15967144849210158, 185897394076705298
OFFSET
0,3
LINKS
FORMULA
G.f. satisfies: A(x) = 1 + x*A(x)*A(1-1/A(x)).
G.f.: A(x*g(x)) = g(x) = (1-1/A(x))/x where g(x) is the g.f. of A088714.
From Paul D. Hanna, Dec 06 2009: (Start)
G.f. satisfies: A(x) = 1 + A(x)*Series_Reversion(x/A(x)).
G.f. satisfies: A( (x/(1+x)) / A(x/(1+x)) ) = 1 + x.
(End)
Logarithmic derivative: given g.f. A(x), let G(x) = A(x*G(x)) be the g.f. of A088714, then A'(x)/A(x) = (G(x) + x*G'(x)) / (1 - x*G(x)).
EXAMPLE
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 24*x^4 + 118*x^5 + 674*x^6 +...
Illustration of logarithmic derivation.
If we form an array of coefficients of x^k in A(x)^n, n>=1, like so:
A^1: [1],1, 2, 6, 24, 118, 674, 4308, ...;
A^2: [1, 2], 5, 16, 64, 308, 1716, 10724, ...;
A^3: [1, 3, 9], 31, 126, 600, 3278, 20070, ...;
A^4: [1, 4, 14, 52], 217, 1032, 5560, 33440, ...;
A^5: [1, 5, 20, 80, 345], 1651, 8820, 52270, ...;
A^6: [1, 6, 27, 116, 519, 2514],13385, 78420, ...;
A^7: [1, 7, 35, 161, 749, 3689, 19663], 114269, ...; ...
then the sums of the coefficients of x^k, k=0..n-1, in A(x)^n (shown above in brackets) begin:
1 = 1;
1 + 2 = 3;
1 + 3 + 9 = 13;
1 + 4 + 14 + 52 = 71;
1 + 5 + 20 + 80 + 345 = 451;
1 + 6 + 27 + 116 + 519 + 2514 = 3183;
1 + 7 + 35 + 161 + 749 + 3689 + 19663 = 24305; ...
and equal the coefficients in log(A(x)):
log(A(x)) = x + 3*x^2/2 + 13*x^3/3 + 71*x^4/4 + 451*x^5/5 + 3183*x^6/6 + 24305*x^7/7 + 197551*x^8/8 +...
The main diagonal in the above table forms the g.f. G(x) of A088714:
[1/1, 2/2, 9/3, 52/4, 345/5, 2514/6, 19663/7, ...]
where G(x) = 1 + x + 3*x^2 + 13*x^3 + 69*x^4 + 419*x^5 + 2809*x^6 +...
satisfies A'(x)/A(x) = (G(x) + x*G'(x)) / (1 - x*G(x)).
MATHEMATICA
terms = 22; A[_] = 1; Do[A[x_] = 1 + x*A[x]*A[1 - 1/A[x]] + O[x]^j // Normal, {j, terms}]; CoefficientList[A[x], x] (* Jean-François Alcover, Jan 15 2018 *)
PROG
(PARI) a(n)=local(A=1+x); for(i=1, n, A=(1+A*serreverse(x/(A+x*O(x^n))))^1); polcoeff(A, n)
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Dec 06 2009
(PARI) {a(n)=local(A=1+x); if(n==0, 1, for(i=1, n,
A=1+x*exp(sum(k=1, n-1, sum(j=0, k, polcoeff(A^k+x*O(x^j), j))*x^k/k)+x*O(x^n))));
polcoeff(A+x*O(x^n), n)}
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Dec 09 2013
CROSSREFS
Cf. A088714.
Sequence in context: A247472 A224295 A263777 * A193938 A298432 A336072
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 12 2003
STATUS
approved