OFFSET
0,3
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..440
FORMULA
G.f.: Coefficient of x^n in A(x)^(n+1)/(n+1) = coefficient of x^n in A(x)^(n+2) = A088716(n).
G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/(1 - x*[A'(x)/A(x)])^n/n ). - Paul D. Hanna, Aug 31 2009
G.f. satisfies: A(x) = 1 + x*A(x)^2/(A(x) - x*A'(x)). - Paul D. Hanna, Mar 20 2013
a(n) ~ c * n! * n^2, where c = A238223 / exp(1) = 0.08017961462469262235245081077906956577... - Vaclav Kotesovec, Feb 21 2014
PROG
(PARI) a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(k=1, n, (1-x*deriv(log(A)))^(-k)*x^k/k))); polcoeff(A, n) \\ Paul D. Hanna, Aug 31 2009
(PARI) a(n)=local(A=1+x); for(i=1, n, A=1+x*A^2/(A-x*deriv(A)+x*O(x^n))); polcoeff(A, n)
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 20 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 12 2003
STATUS
approved