login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A088715
G.f. satisfies: A(x*g(x)) = g(x) where g(x) is the g.f. of A088716.
11
1, 1, 2, 7, 36, 240, 1926, 17815, 184916, 2116498, 26391700, 355405934, 5134778584, 79178537346, 1297633495518, 22522717498167, 412754532495252, 7965288555078018, 161475849044919996, 3431346397643014818
OFFSET
0,3
LINKS
FORMULA
G.f.: Coefficient of x^n in A(x)^(n+1)/(n+1) = coefficient of x^n in A(x)^(n+2) = A088716(n).
G.f. satisfies: A(x) = exp( Sum_{n>=1} x^n/(1 - x*[A'(x)/A(x)])^n/n ). - Paul D. Hanna, Aug 31 2009
G.f. satisfies: A(x) = 1 + x*A(x)^2/(A(x) - x*A'(x)). - Paul D. Hanna, Mar 20 2013
a(n) ~ c * n! * n^2, where c = A238223 / exp(1) = 0.08017961462469262235245081077906956577... - Vaclav Kotesovec, Feb 21 2014
PROG
(PARI) a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=exp(sum(k=1, n, (1-x*deriv(log(A)))^(-k)*x^k/k))); polcoeff(A, n) \\ Paul D. Hanna, Aug 31 2009
(PARI) a(n)=local(A=1+x); for(i=1, n, A=1+x*A^2/(A-x*deriv(A)+x*O(x^n))); polcoeff(A, n)
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 20 2013
CROSSREFS
Sequence in context: A119736 A353166 A308750 * A373773 A088313 A201197
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 12 2003
STATUS
approved