login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A373773
Expansion of e.g.f. exp(x^3 / (6 * (1 - x)^2)) / (1 - x).
1
1, 1, 2, 7, 36, 240, 1930, 17990, 189840, 2233000, 28949200, 410009600, 6297999400, 104275571400, 1851050401200, 35065930299400, 705993054166400, 15051593241484800, 338705933426660800, 8021585392026606400, 199416162740963168000, 5191567315003621552000
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..floor(n/3)} binomial(n-k,n-3*k)/(6^k * k!).
From Vaclav Kotesovec, Jun 18 2024: (Start)
Recurrence: 6*a(n) = 6*(3*n-2)*a(n-1) - 6*(n-1)*(3*n-4)*a(n-2) + 3*(n-2)*(n-1)*(2*n-3)*a(n-3) - (n-3)*(n-2)*(n-1)*a(n-4).
a(n) ~ 3^(-1/3) * exp(19/72 - 3^(-2/3)*n^(1/3) + 3^(2/3)*n^(2/3)/2 - n) * n^(n + 1/6). (End)
PROG
(PARI) a(n) = n!*sum(k=0, n\3, binomial(n-k, n-3*k)/(6^k*k!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 18 2024
STATUS
approved