login
A373770
Expansion of e.g.f. exp(x^2 / (2 * (1 - x))) / (1 - x).
1
1, 1, 3, 12, 63, 405, 3075, 26880, 265545, 2922885, 35447895, 469396620, 6736095135, 104102463465, 1723322736135, 30416726340000, 570089983287825, 11306156398562025, 236514323713142475, 5204122351983254700, 120139520273298100575, 2903216115946088267325
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} binomial(n-k,n-2*k)/(2^k * k!).
From Vaclav Kotesovec, Jun 18 2024: (Start)
Recurrence: 2*a(n) = 2*(2*n-1)*a(n-1) - 2*(n-2)*(n-1)*a(n-2) - (n-2)*(n-1)*a(n-3).
a(n) ~ 2^(-1/4) * exp(-3/4 + sqrt(2*n) - n) * n^(n + 1/4) * (1 + 7/(6*sqrt(2*n))). (End)
PROG
(PARI) a(n) = n!*sum(k=0, n\2, binomial(n-k, n-2*k)/(2^k*k!));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 18 2024
STATUS
approved