login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361596
Expansion of e.g.f. exp( x^2/(2 * (1-x)^2) ) / (1-x).
4
1, 1, 3, 15, 99, 795, 7485, 80745, 981225, 13253625, 196834995, 3185662095, 55770765435, 1049572599075, 21120725230605, 452384160453225, 10272547048388625, 246434674107647025, 6226347228582355875, 165224032352989584975, 4593512876411509125075
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} binomial(n,2*k)/(2^k * k!).
From Vaclav Kotesovec, Mar 17 2023: (Start)
a(n) = (3*n - 2)*a(n-1) - (n-1)*(3*n - 5)*a(n-2) + (n-2)^2*(n-1)*a(n-3).
a(n) ~ 3^(-1/2) * exp(1/6 - n^(1/3)/2 + 3*n^(2/3)/2 - n) * n^(n + 1/6) * (1 + 49/(108*n^(1/3)) + 3293/(116640*n^(2/3))). (End)
MATHEMATICA
Table[n! * Sum[Binomial[n, 2*k]/(2^k * k!), {k, 0, n/2}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 17 2023 *)
PROG
(PARI) my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x^2/(2*(1-x)^2))/(1-x)))
CROSSREFS
Cf. A335344.
Sequence in context: A111546 A219359 A152402 * A255806 A226515 A135883
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 16 2023
STATUS
approved