OFFSET
0,2
COMMENTS
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..250
Glenn Bruda, Asymptotic expansions for the reciprocal Hardy-Littlewood logarithmic integrals, arXiv:2412.19866 [math.CO], 2024. See page 4.
FORMULA
G.f.: log(Sum_{n>=0} (n+2)!/2!*x^n) = Sum_{n>=1} a(n)*x^n/n. a(n) = 3*A111530(n) = -A111548(n+1, 0) for n>0.
a(n+1) = (1/2)*((n+4)!-3*(n+3)!-Sum_{k=0..n-1} (n+2-k)!*a(k+1).
a(n+1) is the moment of order n for the measure of density: 2*x^2*exp(-x)/((x^2*exp(-x)*Ei(x)-x-1)^2+Pi^2*x^4*exp(-2*x)), on the interval 0..infinity. [Groux Roland, Dec 10 2010]
a(n) = Sum_{k=0..n} A200659(n,k)*2^k. - Philippe Deléham, Nov 21 2011
G.f.: 1/(1-3x/(1-2x/(1-4x/(1-3x/(1-5x/(1-4x/(1-...(continued fraction). - Philippe Deléham, Nov 21 2011
G.f. 2 - U(0) where U(k)= 1 - x*(k+1)/(1 - x*(k+3)/U(k+1)); (continued fraction, 2-step). - Sergei N. Gladkovskii, Jun 29 2012
G.f. -1/G(0) where G(k) = x - 1 - k*x - x*(k+2)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 13 2012
G.f.: A(x) = 1/(G(0) - x) where G(k) = 1 + (k+1)*x - x*(k+3)/G(k+1) ; (recursively defined continued fraction). - Sergei N. Gladkovskii, Dec 26 2012
G.f.: 1/Q(0), where Q(k)= 1 - x + k*x - x*(k+2)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, May 03 2013
G.f.: 1/x -2 -2/(x*G(0)), where G(k)= 1 + 1/(1 - x*(k+3)/(x*(k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
G.f.: 1/x - 2 - 1/(x*W(0)), where W(k) = 1 - x*(k+3)/( x*(k+3) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 25 2013
G.f.: W(0), where W(k) = 1 - x*(k+3)/( x*(k+3) - 1/(1 - x*(k+2)/( x*(k+2) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
PROG
(PARI) {a(n)=if(n<0, 0, (matrix(n+3, n+3, m, j, if(m==j, 1, if(m==j+1, -m+1, -(m-j-1)*polcoeff(log(sum(i=0, m, (i+2)!/2!*x^i)), m-j-1))))^-1)[n+3, 3])}
(PARI) a(n)=(1/2)*((n+3)!-3*(n+2)!-sum(k=0, n-2, (n+1-k)!*a(k+1))) \\ Formula by R. Groux, implemented & checked to conform to given terms by M. F. Hasler, Dec 12 2010
(Haskell)
a111546 n = a111546_list !! n
a111546_list = 1 : f 2 [1] where
f v ws@(w:_) = y : f (v + 1) (y : ws) where
y = v * w + (sum $ zipWith (*) ws $ reverse ws)
-- Reinhard Zumkeller, Jan 24 2014
CROSSREFS
KEYWORD
nonn,changed
AUTHOR
Paul D. Hanna, Aug 07 2005
STATUS
approved