login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Column 2 of triangle A111544.
8

%I #50 Jan 06 2025 06:29:58

%S 1,3,15,99,783,7083,71415,789939,9485343,122721723,1701224775,

%T 25156450179,395362560303,6583219735563,115817825451735,

%U 2147443419579219,41868118883289663,856527397513863003

%N Column 2 of triangle A111544.

%C Also forms the columns of triangle A111548, which is the matrix inverse of triangle A111544.

%H Reinhard Zumkeller, <a href="/A111546/b111546.txt">Table of n, a(n) for n = 0..250</a>

%H Glenn Bruda, <a href="https://arxiv.org/abs/2412.19866">Asymptotic expansions for the reciprocal Hardy-Littlewood logarithmic integrals</a>, arXiv:2412.19866 [math.CO], 2024. See page 4.

%F G.f.: log(Sum_{n>=0} (n+2)!/2!*x^n) = Sum_{n>=1} a(n)*x^n/n. a(n) = 3*A111530(n) = -A111548(n+1, 0) for n>0.

%F a(n+1) = (1/2)*((n+4)!-3*(n+3)!-Sum_{k=0..n-1} (n+2-k)!*a(k+1).

%F a(n+1) is the moment of order n for the measure of density: 2*x^2*exp(-x)/((x^2*exp(-x)*Ei(x)-x-1)^2+Pi^2*x^4*exp(-2*x)), on the interval 0..infinity. [_Groux Roland_, Dec 10 2010]

%F a(n) = Sum_{k=0..n} A200659(n,k)*2^k. - _Philippe Deléham_, Nov 21 2011

%F G.f.: 1/(1-3x/(1-2x/(1-4x/(1-3x/(1-5x/(1-4x/(1-...(continued fraction). - _Philippe Deléham_, Nov 21 2011

%F G.f. 2 - U(0) where U(k)= 1 - x*(k+1)/(1 - x*(k+3)/U(k+1)); (continued fraction, 2-step). - _Sergei N. Gladkovskii_, Jun 29 2012

%F G.f. -1/G(0) where G(k) = x - 1 - k*x - x*(k+2)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - _Sergei N. Gladkovskii_, Aug 13 2012

%F G.f.: A(x) = 1/(G(0) - x) where G(k) = 1 + (k+1)*x - x*(k+3)/G(k+1) ; (recursively defined continued fraction). - _Sergei N. Gladkovskii_, Dec 26 2012

%F G.f.: 1/Q(0), where Q(k)= 1 - x + k*x - x*(k+2)/Q(k+1); (continued fraction). - _Sergei N. Gladkovskii_, May 03 2013

%F G.f.: 1/x -2 -2/(x*G(0)), where G(k)= 1 + 1/(1 - x*(k+3)/(x*(k+3) + 1/G(k+1))); (continued fraction). - _Sergei N. Gladkovskii_, Jun 06 2013

%F G.f.: 1/x - 2 - 1/(x*W(0)), where W(k) = 1 - x*(k+3)/( x*(k+3) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - _Sergei N. Gladkovskii_, Aug 25 2013

%F G.f.: W(0), where W(k) = 1 - x*(k+3)/( x*(k+3) - 1/(1 - x*(k+2)/( x*(k+2) - 1/W(k+1) ))); (continued fraction). - _Sergei N. Gladkovskii_, Aug 26 2013

%o (PARI) {a(n)=if(n<0,0,(matrix(n+3,n+3,m,j,if(m==j,1,if(m==j+1,-m+1, -(m-j-1)*polcoeff(log(sum(i=0,m,(i+2)!/2!*x^i)),m-j-1))))^-1)[n+3,3])}

%o (PARI) a(n)=(1/2)*((n+3)!-3*(n+2)!-sum(k=0,n-2,(n+1-k)!*a(k+1))) \\ Formula by R. Groux, implemented & checked to conform to given terms by _M. F. Hasler_, Dec 12 2010

%o (Haskell)

%o a111546 n = a111546_list !! n

%o a111546_list = 1 : f 2 [1] where

%o f v ws@(w:_) = y : f (v + 1) (y : ws) where

%o y = v * w + (sum $ zipWith (*) ws $ reverse ws)

%o -- _Reinhard Zumkeller_, Jan 24 2014

%Y Cf. A111544, A111530, A111548, A230253.

%Y Cf. A005412.

%K nonn,changed

%O 0,2

%A _Paul D. Hanna_, Aug 07 2005