login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A156106
Expansion of F(1/3,2/3;1/2;27*x/2) / F(1/3,-1/3;-1/2;27*x/2).
0
1, 3, 15, 99, 783, 6987, 67671, 694035, 7418943, 81800091, 923720679, 10630297827, 124224709455, 1470172954347, 17585028636279, 212248303720371, 2581823992868703
OFFSET
0,2
COMMENTS
Hankel transform is 3^n*2^(n^2)*A005156 = 6^n*4^C(n,2)*A005156 = 3^n*A002416*A005156.
LINKS
I. Gessel and G. Xin, The Generating Function of Ternary Trees and Continued Fractions, arXiv:math/0505217 [math.CO], 2005.
FORMULA
D-finite with recurrence: 2*(2*n-1)*(n-2)*a(n) + (-72*(n-3)^2-171*n+420)*a(n-1) + (297*(n-3)^2+675*n-1674)*a(n-2) - 81*(3*n-5)*(3*n-7)*a(n-3) = 0. - Georg Fischer, Nov 30 2022
CROSSREFS
Sequence in context: A208426 A168344 A091713 * A111546 A219359 A152402
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Feb 04 2009
STATUS
approved