login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A208426 G.f.: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-3*x)^(3*n+1). 2
1, 3, 15, 99, 711, 5373, 42099, 338355, 2771127, 23028813, 193610385, 1643215005, 14056350075, 121040308665, 1048212778635, 9122168556819, 79727173530327, 699443806767525, 6156776010386481, 54356715121718349, 481194980656865721, 4270165015550478003 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Compare g.f. to: Sum_{n>=0} (3*n)!/n!^3 * x^(2*n)/(1-2*x)^(3*n+1), which is a g.f. of the Franel numbers (A000172).

Diagonal of rational functions 1/(1 - x*y - y*z - x*z - 3*x*y*z), 1/(1 - x*y + y*z + x*z - 3*x*y*z). - Gheorghe Coserea, Jul 04 2018

LINKS

Gheorghe Coserea, Table of n, a(n) for n = 0..200

FORMULA

From Gheorghe Coserea, Jul 04 2018: (Start)

a(n) = Sum_{k=0..floor(n/2)} (n+k)!/(k!^3*(n-2*k)!) * 3^(n-2*k).

G.f. y=A(x) satisfies: 0 = x*(3*x + 2)*(27*x^3 + 9*x - 1)*y'' + (243*x^4 + 216*x^3 + 27*x^2 + 36*x - 2)*y' + 3*(27*x^3 + 33*x^2 - 2*x + 2)*y.

(End)

From Vaclav Kotesovec, Oct 07 2020: (Start)

Recurrence: n^2*(3*n - 5)*a(n) = 3*(9*n^3 - 24*n^2 + 17*n - 4)*a(n-1) + 3*(3*n - 4)*a(n-2) + 27*(n-2)^2*(3*n - 2)*a(n-3).

a(n) ~ sqrt(2 + sqrt(5)*phi^(-1/3) + sqrt(5)*phi^(1/3)) * 3^n * (1 + phi^(-2/3) + phi^(2/3))^n / (2*Pi*n), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio.

(End)

EXAMPLE

G.f.: A(x) = 1 + 3*x + 15*x^2 + 99*x^3 + 711*x^4 + 5373*x^5 + 42099*x^6 + ...

where

A(x) = 1/(1-3*x) + 6*x^2/(1-3*x)^4 + 90*x^4/(1-3*x)^7 + 1680*x^6/(1-3*x)^10 + 34650*x^8/(1-3*x)^13 + 756756*x^10/(1-3*x)^16 + ...

MATHEMATICA

Table[3^n * HypergeometricPFQ[{1/2 - n/2, -n/2, 1 + n}, {1, 1}, 4/9], {n, 0, 25}] (* Vaclav Kotesovec, Oct 07 2020 *)

PROG

(PARI) {a(n)=polcoeff(sum(m=0, n, (3*m)!/m!^3*x^(2*m)/(1-3*x+x*O(x^n))^(3*m+1)), n)}

for(n=0, 31, print1(a(n), ", "))

(PARI) a(n) = sum(k=0, n\2, (n+k)!/(k!^3*(n-2*k)!) * 3^(n-2*k)); \\ Gheorghe Coserea, Jul 04 2018

CROSSREFS

Cf. A000172, A002893, A208425.

Sequence in context: A140286 A199416 A046635 * A168344 A091713 A156106

Adjacent sequences:  A208423 A208424 A208425 * A208427 A208428 A208429

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Feb 26 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 5 17:08 EST 2021. Contains 349557 sequences. (Running on oeis4.)