login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255806
Expansion of e.g.f.: exp(Sum_{k>=1} 3*x^k).
5
1, 3, 15, 99, 801, 7623, 83079, 1017495, 13808097, 205374123, 3318673599, 57845821707, 1081091446785, 21553820597871, 456410531639799, 10225931132021247, 241609515712343361, 6002109578246918355, 156360266121378584943, 4261404847790207796147
OFFSET
0,2
COMMENTS
In general, if e.g.f. = exp(Sum_{k>=1} m*x^k) = exp(m*x/(1-x)) and m>0, then a(n) ~ n! * m^(1/4) * exp(2*sqrt(m*n) - m/2) / (2 * sqrt(Pi) * n^(3/4)).
FORMULA
E.g.f.: exp(3*x/(1-x)).
a(n) ~ 3^(1/4) * exp(2*sqrt(3*n) - 3/2) * n! / (2*sqrt(Pi)*n^(3/4)).
a(n) = (2*n+1)*a(n-1) - (n-2)*(n-1)*a(n-2). - Vaclav Kotesovec, Nov 04 2016
From G. C. Greubel, Feb 24 2021: (Start)
a(n) = A253286(n+3, 3).
a(n) = 3*(n-1)!*LaguerreL(n-1, 1, -3) with a(0) = 1. (End)
MATHEMATICA
nmax=20; CoefficientList[Series[Exp[Sum[3*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0, nmax]!
CoefficientList[Series[E^(3*x/(1-x)), {x, 0, 20}], x] * Range[0, 20]!
Table[If[n==0, 1, 3*(n-1)!*LaguerreL[n-1, 1, -3]], {n, 0, 25}] (* G. C. Greubel, Feb 24 2021 *)
PROG
(PARI) my(x='x +O('x^50)); Vec(serlaplace(exp(3*x/(1-x)))) \\ G. C. Greubel, Feb 05 2017
(Sage) [1 if n==0 else 3*factorial(n-1)*gen_laguerre(n-1, 1, -3) for n in (0..25)] # G. C. Greubel, Feb 24 2021
(Magma) [n eq 0 select 1 else 3*Factorial(n-1)*Evaluate(LaguerrePolynomial(n-1, 1), -3): n in [0..25]]; // G. C. Greubel, Feb 24 2021
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Mar 07 2015
STATUS
approved