login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255809 Infinite tree (flattened) generated as follows:  generation g(1) = (1); thereafter, putting h = 2^n, each (1,x(2),...,x(h)) in generation g(n) has 1st and 2nd offspring, namely (1,x(2),...,x(h),x(h)+1) and (1,x(2),...,x(h),x(h)+2). 2
1, 1, 2, 1, 3, 1, 2, 3, 1, 2, 4, 1, 3, 4, 1, 3, 5, 1, 2, 3, 4, 1, 2, 3, 5, 1, 2, 4, 5, 1, 2, 4, 6, 1, 3, 4, 5, 1, 3, 4, 6, 1, 3, 5, 6, 1, 3, 5, 7, 1, 2, 3, 4, 5, 1, 2, 3, 4, 6, 1, 2, 3, 5, 6, 1, 2, 3, 5, 7, 1, 2, 4, 5, 6, 1, 2, 4, 5, 7, 1, 2, 4, 6, 7, 1, 2 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Generation n consists of 2^(n-1) increasing n-tuples that have maximal gapsize 2.

LINKS

Clark Kimberling, Table of n, a(n) for n = 1..4000

EXAMPLE

generation g(1) = (1);

g(2) = (1,2), (1,3);

g(3) = (1,2,3), (1,2,4), (1,3,4), (1,3,5);

g(4) = (1,2,3,4), (1,2,3,5), (1,2,4,5), (1,2,4,6), (1,3,4,5), (1,3,4,6), (1,3,5,6), (1,3,5,7).

MATHEMATICA

z = 5; t[n_] := t[n] = Join[{{First[#]}}, Rest[#]] &[Sort[Flatten[NestList[Map[Flatten, Transpose[Map[Flatten[#, 1] &, {{#, #}, {1 + Map[Last, #], 2 + Map[Last, #]}}]]] &, 1(*seed*), #], 1]] &[n(*iterations*)]]

Column[Table[t[n], {n, 1, z}]] (* 1st z generations *)

Flatten[t[6]] (* A255809,  Peter J. C. Moses, Mar 05 2015 *)

CROSSREFS

Cf. A255810.

Sequence in context: A070094 A275875 A105497 * A132662 A279782 A132589

Adjacent sequences:  A255806 A255807 A255808 * A255810 A255811 A255812

KEYWORD

nonn,easy

AUTHOR

Clark Kimberling, Mar 09 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 23 19:46 EDT 2017. Contains 286926 sequences.