login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255812
Rectangular array: row n gives the denominators in the positive convolutory n-th root of (1,1,1,...).
2
1, 1, 1, 1, 2, 1, 1, 8, 3, 1, 1, 16, 9, 4, 1, 1, 128, 81, 32, 5, 1, 1, 256, 243, 128, 25, 6, 1, 1, 1024, 729, 2048, 125, 72, 7, 1, 1, 2048, 6561, 8192, 625, 1296, 49, 8, 1, 1, 32768, 19683, 65536, 15625, 31104, 343, 128, 9, 1, 1, 65536, 59049, 262144, 78125
OFFSET
1,5
COMMENTS
(See Comments at A255811.)
LINKS
FORMULA
G.f. of s: (1 - t)^(-1/n).
EXAMPLE
First, regarding the numbers numerator/denominator, we have
row 1: 1,1,1,1,1,1,1,1,1,1,1,1,..., the 0th self-convolution of (1,1,1,...);
row 2: 1,1/2,3/8,5/16,35/128,63/256, ..., convolutory sqrt of (1,1,1,...);
row 3: 1,1/3,2/9,14/81,35/243,91/729,..., convolutory 3rd root
row 4: 1,1/4,5/32,15/128,195/2048,663/8192,..., convolutory 4th root.
Taking only denominators:
row 1: 1,1,1,1,1,1,1,...
row 2: 1,2,8,16,128,...
row 3: 1,3,9,81,243,729,...
row 4: 1,4,32,128,2048,8192,...
MATHEMATICA
z = 15; t[n_] := CoefficientList[Normal[Series[(1 - t)^(-1/n), {t, 0, z}]], t];
u = Table[Numerator[t[n]], {n, 1, z}]
TableForm[Table[u[[n, k]], {n, 1, z}, {k, 1, z}]] (*A255811 array*)
Table[u[[n - k + 1, k]], {n, z}, {k, n, 1, -1}] // Flatten (*A255811 sequence*)
v = Table[Denominator[t[n]], {n, 1, z}]
TableForm[Table[v[[n, k]], {n, 1, z}, {k, 1, z}]] (*A255812 array*)
Table[v[[n - k + 1, k]], {n, z}, {k, n, 1, -1}] // Flatten (*A255812 sequence*)
CROSSREFS
Sequence in context: A077058 A053373 A297733 * A249141 A353953 A102875
KEYWORD
nonn,easy,tabl,frac
AUTHOR
Clark Kimberling, Mar 11 2015
STATUS
approved