OFFSET
1,5
COMMENTS
(See Comments at A255811.)
LINKS
Clark Kimberling, Antidiagonals n = 1..60, flattened
FORMULA
G.f. of s: (1 - t)^(-1/n).
EXAMPLE
First, regarding the numbers numerator/denominator, we have
row 1: 1,1,1,1,1,1,1,1,1,1,1,1,..., the 0th self-convolution of (1,1,1,...);
row 2: 1,1/2,3/8,5/16,35/128,63/256, ..., convolutory sqrt of (1,1,1,...);
row 3: 1,1/3,2/9,14/81,35/243,91/729,..., convolutory 3rd root
row 4: 1,1/4,5/32,15/128,195/2048,663/8192,..., convolutory 4th root.
Taking only denominators:
row 1: 1,1,1,1,1,1,1,...
row 2: 1,2,8,16,128,...
row 3: 1,3,9,81,243,729,...
row 4: 1,4,32,128,2048,8192,...
MATHEMATICA
z = 15; t[n_] := CoefficientList[Normal[Series[(1 - t)^(-1/n), {t, 0, z}]], t];
u = Table[Numerator[t[n]], {n, 1, z}]
TableForm[Table[u[[n, k]], {n, 1, z}, {k, 1, z}]] (*A255811 array*)
Table[u[[n - k + 1, k]], {n, z}, {k, n, 1, -1}] // Flatten (*A255811 sequence*)
v = Table[Denominator[t[n]], {n, 1, z}]
TableForm[Table[v[[n, k]], {n, 1, z}, {k, 1, z}]] (*A255812 array*)
Table[v[[n - k + 1, k]], {n, z}, {k, n, 1, -1}] // Flatten (*A255812 sequence*)
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Mar 11 2015
STATUS
approved