login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249141
Decimal expansion of 'sigma', a constant associated with the expected number of random elements to generate a finite abelian group.
1
2, 1, 1, 8, 4, 5, 6, 5, 6, 3, 4, 7, 0, 1, 6, 3, 5, 3, 2, 3, 8, 2, 5, 2, 7, 7, 6, 9, 1, 0, 2, 3, 6, 4, 7, 6, 4, 2, 8, 8, 5, 9, 0, 7, 8, 5, 6, 1, 8, 5, 1, 7, 9, 1, 5, 4, 1, 4, 2, 6, 3, 8, 5, 2, 9, 0, 9, 8, 3, 4, 1, 1, 2, 3, 6, 5, 3, 4, 6, 3, 4, 5, 7, 7, 5, 5, 7, 0, 8, 2, 5, 9, 7, 8, 1, 8, 7, 6, 7, 9, 3, 9
OFFSET
1,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.1 Abelian group enumeration constants, p. 273.
LINKS
Carl Pomerance, The expected number of random elements to generate a finite abelian group, Periodica Mathematica Hungarica 43 (2001), 191-198.
FORMULA
sigma = 1+sum_{j >= 2} (1-prod_{k >= j} zeta(k)^(-1)).
EXAMPLE
2.11845656347016353238252776910236476428859...
MATHEMATICA
digits = 102; jmax = 400; P[j_] := 1/Product[N[Zeta[k], digits+100], {k, j, jmax}]; sigma = 1+Sum[1 - P[j], {j, 2, jmax}]; RealDigits[sigma, 10, digits] // First
PROG
(PARI) default(realprecision, 120); 1 + suminf(j=2, 1 - prodinf(k=j, 1/zeta(k))) \\ Michel Marcus, Oct 22 2014
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved