login
A249138
Triangular array read by rows: row n gives the coefficients of the polynomial p(n,x) defined in Comments.
1
1, 1, 1, 2, 1, 1, 2, 4, 1, 1, 6, 5, 7, 1, 1, 6, 18, 8, 10, 1, 1, 24, 26, 46, 12, 14, 1, 1, 24, 96, 58, 86, 16, 18, 1, 1, 120, 154, 326, 118, 156, 21, 23, 1, 1, 120, 600, 444, 756, 198, 246, 26, 28, 1, 1, 720, 1044, 2556, 1152, 1692, 324, 384, 32, 34, 1, 1
OFFSET
0,4
COMMENTS
The polynomial p(n,x) is the numerator of the rational function given by f(n,x) = x + floor((n+1)/2))/f(n-1,x), where f(0,x) = 1. (Sum of numbers in row n) = A056952(n) for n >= 0. (Column 1) is essentially A091123 (repeated factorials).
LINKS
Clark Kimberling, Rows 0..100, flattened
EXAMPLE
f(0,x) = 1/1, so that p(0,x) = 1
f(1,x) = (1 + x)/1, so that p(1,x) = 1 + x;
f(2,x) = (2 + x + x^2)/(1 + x), so that p(2,x) = 2 + x + x^2).
First 6 rows of the triangle of coefficients:
1
1 1
2 1 1
2 4 1 1
6 5 7 1 1
6 18 8 10 1 1
MATHEMATICA
z = 15; p[x_, n_] := x + Floor[(n+1)/2]/p[x, n - 1]; p[x_, 1] = 1;
t = Table[Factor[p[x, n]], {n, 1, z}]
u = Numerator[t]
TableForm[Table[CoefficientList[u[[n]], x], {n, 1, z}]] (* A249138 array *)
Flatten[CoefficientList[u, x]] (* A249138 sequence *)
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Oct 22 2014
STATUS
approved