login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Rectangular array: row n gives the denominators in the positive convolutory n-th root of (1,1,1,...).
2

%I #8 Feb 04 2019 07:27:54

%S 1,1,1,1,2,1,1,8,3,1,1,16,9,4,1,1,128,81,32,5,1,1,256,243,128,25,6,1,

%T 1,1024,729,2048,125,72,7,1,1,2048,6561,8192,625,1296,49,8,1,1,32768,

%U 19683,65536,15625,31104,343,128,9,1,1,65536,59049,262144,78125

%N Rectangular array: row n gives the denominators in the positive convolutory n-th root of (1,1,1,...).

%C (See Comments at A255811.)

%H Clark Kimberling, <a href="/A255812/b255812.txt">Antidiagonals n = 1..60, flattened</a>

%F G.f. of s: (1 - t)^(-1/n).

%e First, regarding the numbers numerator/denominator, we have

%e row 1: 1,1,1,1,1,1,1,1,1,1,1,1,..., the 0th self-convolution of (1,1,1,...);

%e row 2: 1,1/2,3/8,5/16,35/128,63/256, ..., convolutory sqrt of (1,1,1,...);

%e row 3: 1,1/3,2/9,14/81,35/243,91/729,..., convolutory 3rd root

%e row 4: 1,1/4,5/32,15/128,195/2048,663/8192,..., convolutory 4th root.

%e Taking only denominators:

%e row 1: 1,1,1,1,1,1,1,...

%e row 2: 1,2,8,16,128,...

%e row 3: 1,3,9,81,243,729,...

%e row 4: 1,4,32,128,2048,8192,...

%t z = 15; t[n_] := CoefficientList[Normal[Series[(1 - t)^(-1/n), {t, 0, z}]], t];

%t u = Table[Numerator[t[n]], {n, 1, z}]

%t TableForm[Table[u[[n, k]], {n, 1, z}, {k, 1, z}]] (*A255811 array*)

%t Table[u[[n - k + 1, k]], {n, z}, {k, n, 1, -1}] // Flatten (*A255811 sequence*)

%t v = Table[Denominator[t[n]], {n, 1, z}]

%t TableForm[Table[v[[n, k]], {n, 1, z}, {k, 1, z}]] (*A255812 array*)

%t Table[v[[n - k + 1, k]], {n, z}, {k, n, 1, -1}] // Flatten (*A255812 sequence*)

%Y Cf. A244811, A000012.

%K nonn,easy,tabl,frac

%O 1,5

%A _Clark Kimberling_, Mar 11 2015