login
A361593
a(1) = 1, a(2) = 2, a(3) = 3; for n > 3, a(n) is the smallest positive number which has not appeared such that all the distinct prime factors of a(n-3) + a(n-2) + a(n-1) are factors of a(n).
1
1, 2, 3, 6, 11, 10, 9, 30, 7, 46, 83, 34, 163, 70, 267, 20, 357, 322, 699, 1378, 2399, 2238, 6015, 5326, 13579, 6230, 25135, 106, 31471, 14178, 45755, 15234, 75167, 68078, 8341, 151586, 228005, 193966, 573557, 248882, 1016405, 306474, 1571761, 361830, 2240065, 1043414, 3645309, 3464394
OFFSET
1,2
COMMENTS
This is a variation of A359557 where the previous three terms are added instead of two. Unlike A359557 the terms here do no rapidly reach a regime where all terms share one or more prime factors, and it is unknown if this ever occurs.
LINKS
Michael De Vlieger, Scatterplot of Log_10(a(n)), n = 1..750, showing records in red.
Michael De Vlieger, Log log scatterplot of log_10(a(n)), n = 1..600, showing primes in red, prime powers in gold, and squarefree composites in green.
EXAMPLE
a(6) = 10 as a(3) + a(4) + a(5) = 3 + 6 + 11 = 20 = 2*2*5, and the smallest unused number containing 2 and 5 as factors is 10.
MATHEMATICA
nn = 120; c[_] = False; q[_] = 1;
f[n_] := Times @@ FactorInteger[n][[All, 1]]; t = 3;
Array[Set[{a[#], c[#]}, {#, True}] &, t]; Set[{i, j, k, x}, {a[t - 2],
a[t - 1], a[t], f[a[t - 2] + a[t - 1] + a[t]]}];
Do[m = q[x];
While[c[x m], m++];
m *= x; While[c[x q[x]], q[x]++];
Set[{a[n], c[m], i, j, k, x}, {m, True, j, k, m, f[j + k + m]}], {n,
t + 1, nn}]; Array[a, nn] (* Michael De Vlieger, Mar 20 2023 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved