login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A361595
Expansion of e.g.f. exp( (x / (1-x))^3 ) / (1-x).
4
1, 1, 2, 12, 120, 1320, 15480, 199080, 2862720, 46146240, 826156800, 16212873600, 344741443200, 7875365097600, 192137321376000, 4984375210214400, 136994756496998400, 3976455027389644800, 121533921410994892800, 3900447928934548992000
OFFSET
0,3
FORMULA
a(n) = n! * Sum_{k=0..floor(n/3)} binomial(n,3*k)/k!.
From Vaclav Kotesovec, Mar 17 2023: (Start)
a(n) = (4*n - 3)*a(n-1) - 3*(n-1)*(2*n - 3)*a(n-2) + 2*(n-2)*(n-1)*(2*n - 3)*a(n-3) - (n-3)^2*(n-2)*(n-1)*a(n-4).
a(n) ~ 3^(-1/8) * exp(-1/4 + 5*3^(-1/4)*n^(1/4)/8 - sqrt(3*n)/2 + 4*3^(-3/4) * n^(3/4) - n) * n^(n + 1/8) / 2 * (1 + (1511/2560)*3^(1/4)/n^(1/4)). (End)
MATHEMATICA
Table[n! * Sum[Binomial[n, 3*k]/k!, {k, 0, n/3}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 17 2023 *)
PROG
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp((x/(1-x))^3)/(1-x)))
CROSSREFS
Cf. A361572.
Sequence in context: A362457 A364422 A286629 * A378095 A370876 A329851
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Mar 16 2023
STATUS
approved