login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to place n nonattacking semi-bishops on an n X n board.
20

%I #54 May 09 2020 19:11:53

%S 1,5,51,769,15345,381065,11323991,391861841,15476988033,687029386845,

%T 33861652925595,1834814222811361,108411291759763681,

%U 6936921762461326545,477881176664541171375,35264213540563039871265,2775185864375851234241985,232010235620834821000259765,20534530616200868936398461635

%N Number of ways to place n nonattacking semi-bishops on an n X n board.

%C Two semi-bishops do not attack each other if they are in the same NorthWest-SouthEast diagonal.

%C Conjecture: Number of parity preserving permutations of the set {1, 2, ..., 2n+1} with exactly n+1 cycles (see A246117). - _Peter Luschny_, Feb 09 2015

%H Vaclav Kotesovec, <a href="/A187235/b187235.txt">Table of n, a(n) for n = 1..350</a>

%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>, 6ed, 2013, p. 260-265.

%F a(n)/(n-1)! ~ 0.24252191 * 4.9108149^n where the second constant is 1/(z*(1-z)) = 4.910814964..., where z=0.715331862959... is a root of the equation z=2*(z-1)*log(1-z).

%F For constants see A238261 and A238262. - _Vaclav Kotesovec_, Feb 21 2014

%F a(n) = (-1)^n * Sum_{i=0..n} Stirling1(n,i) * Stirling1(n+1,n-i+1). - _Ryan Brooks_, May 09 2020

%t Table[If[n==1,1,Coefficient[Expand[Product[x+i,{i,1,n}]*Product[x+i,{i,1,n-1}],x],x,n-1]],{n,1,50}]

%t Table[(-1)^n*Sum[StirlingS1[n+1,j]*StirlingS1[n,n-j+1],{j,1,n}],{n,1,50}] (* Explicit formula, _Vaclav Kotesovec_, Mar 24 2011 *)

%o (PARI) a(n) = {(-1)^n*sum(i=0, n, stirling(n,i,1) * stirling(n+1,n-i+1,1))} \\ _Andrew Howroyd_, May 09 2020

%Y Cf. A238261, A238262, A002465, A099152, A000255, A129256.

%K nonn,nice

%O 1,2

%A _Vaclav Kotesovec_, Mar 08 2011