login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

(Signless) Central Stirling numbers of the first kind s(2n,n).
20

%I #32 Jul 10 2023 07:48:00

%S 1,1,11,225,6769,269325,13339535,790943153,54631129553,4308105301929,

%T 381922055502195,37600535086859745,4070384057007569521,

%U 480544558742733545125,61445535102359115635655,8459574446076318147830625,1247677142707273537964543265,196258640868140652967646352465

%N (Signless) Central Stirling numbers of the first kind s(2n,n).

%C Number of permutations with n cycles on a set of size 2n.

%H Vincenzo Librandi, <a href="/A187646/b187646.txt">Table of n, a(n) for n = 0..200</a>

%F Asymptotic: a(n) ~ (2*n/(e*z*(1-z)))^n*sqrt((1-z)/(2*Pi*n*(2z-1))), where z=0.715331862959... is a root of the equation z = 2*(z-1)*log(1-z). - _Vaclav Kotesovec_, May 30 2011

%p seq(abs(Stirling1(2*n,n)), n=0..20);

%t Table[Abs[StirlingS1[2n, n]], {n, 0, 12}]

%t N[1 + 1/(2 LambertW[-1, -Exp[-1/2]/2]), 50] (* The constant z in the asymptotic - _Vladimir Reshetnikov_, Oct 08 2016 *)

%o (Maxima) makelist(abs(stirling1(2*n,n)),n,0,12);

%o (PARI) for(n=0,50, print1(abs(stirling(2*n, n, 1)), ", ")) \\ _G. C. Greubel_, Nov 09 2017

%Y Cf. A008275, A007820, A187235, A237993, A242676, A285862.

%K nonn,easy

%O 0,3

%A _Emanuele Munarini_, Mar 12 2011