login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A245076
E.g.f.: Sum_{n>=0} exp(n*5^n*x) * x^n/n!.
3
1, 1, 11, 226, 17001, 2671876, 1242300001, 1250703890626, 3363964848750001, 20117722302277734376, 302329590133667187500001, 10299774530356369019736328126, 846958190132982653045661328125001, 160085716663876329020695686381591796876
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} C(n,k) * k^(n-k) * 5^(k*(n-k)).
O.g.f.: Sum_{n>=0} x^n/(1 - n*5^n*x)^(n+1).
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n, k]*k^(n-k)*5^(k*(n-k)), {k, 0, n}], {n, 1, 20}]}]
PROG
(PARI) {a(n) = sum(k=0, n, binomial(n, k) * k^(n-k) * 5^(k*(n-k)) )}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jul 11 2014
STATUS
approved