login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A245076
E.g.f.: Sum_{n>=0} exp(n*5^n*x) * x^n/n!.
3
1, 1, 11, 226, 17001, 2671876, 1242300001, 1250703890626, 3363964848750001, 20117722302277734376, 302329590133667187500001, 10299774530356369019736328126, 846958190132982653045661328125001, 160085716663876329020695686381591796876
OFFSET
0,3
FORMULA
a(n) = Sum_{k=0..n} C(n,k) * k^(n-k) * 5^(k*(n-k)).
O.g.f.: Sum_{n>=0} x^n/(1 - n*5^n*x)^(n+1).
MATHEMATICA
Flatten[{1, Table[Sum[Binomial[n, k]*k^(n-k)*5^(k*(n-k)), {k, 0, n}], {n, 1, 20}]}]
PROG
(PARI) {a(n) = sum(k=0, n, binomial(n, k) * k^(n-k) * 5^(k*(n-k)) )}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vaclav Kotesovec, Jul 11 2014
STATUS
approved