login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f.: Sum_{n>=0} exp(n*5^n*x) * x^n/n!.
3

%I #7 Jul 11 2014 07:42:35

%S 1,1,11,226,17001,2671876,1242300001,1250703890626,3363964848750001,

%T 20117722302277734376,302329590133667187500001,

%U 10299774530356369019736328126,846958190132982653045661328125001,160085716663876329020695686381591796876

%N E.g.f.: Sum_{n>=0} exp(n*5^n*x) * x^n/n!.

%H Vaclav Kotesovec, <a href="http://oeis.org/A244820/a244820.pdf">Asymptotic of sequences A244820, A244821 and A244822</a>

%F a(n) = Sum_{k=0..n} C(n,k) * k^(n-k) * 5^(k*(n-k)).

%F O.g.f.: Sum_{n>=0} x^n/(1 - n*5^n*x)^(n+1).

%t Flatten[{1, Table[Sum[Binomial[n, k]*k^(n-k)*5^(k*(n-k)), {k, 0, n}], {n, 1, 20}]}]

%o (PARI) {a(n) = sum(k=0, n, binomial(n, k) * k^(n-k) * 5^(k*(n-k)) )}

%o for(n=0, 20, print1(a(n), ", "))

%Y Cf. A244820, A244821, A244822.

%K nonn,easy

%O 0,3

%A _Vaclav Kotesovec_, Jul 11 2014