login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A305141
O.g.f. A(x) satisfies: 0 = [x^n] exp( n^2 * Integral A(x)^3 dx ) / A(x), for n > 0.
12
1, 1, 11, 228, 6621, 240689, 10351550, 509604000, 28110904439, 1711981045939, 113863658640249, 8201890764752000, 635637023178406472, 52712939749766528868, 4656568244615480818794, 436486181882215383918344, 43268184144892865821692559, 4522468113281674174052795751, 497107356171097228291772997005
OFFSET
0,3
COMMENTS
It is remarkable that this sequence should consist entirely of integers.
Note: 0 = [x^n] exp( n * Integral F(x)^3 dx ) / F(x) holds for n > 0 when F(x) = 1 + x*F(x)^4 is a g.f. of A002293.
LINKS
FORMULA
a(n) ~ c * d^n * (n-1)!, where d = 4 / (-LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))) and c = 2.1981... - Vaclav Kotesovec, Oct 19 2020
EXAMPLE
O.g.f.: A(x) = 1 + x + 11*x^2 + 228*x^3 + 6621*x^4 + 240689*x^5 + 10351550*x^6 + 509604000*x^7 + 28110904439*x^8 + 1711981045939*x^9 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in exp(n^2*Integral A(x)^3 dx)/A(x) begins:
n=0: [1, -1, -10, -207, -6076, -223435, -9707184, ...];
n=1: [1, 0, -9, -616/3, -6115, -1128624/5, -88359418/9, ...];
n=2: [1, 3, 0, -535/3, -6107, -1156806/5, -455986832/45, ...];
n=3: [1, 8, 35, 0, -5257, -1167296/5, -52842348/5, ...];
n=4: [1, 15, 126, 2219/3, 0, -1003419/5, -96971176/9, ...];
n=5: [1, 24, 315, 9104/3, 22299, 0, -83502496/9, ...];
n=6: [1, 35, 656, 8883, 98045, 4304146/5, 0, ...];
n=7: [1, 48, 1215, 65480/3, 316393, 19736784/5, 1805083618/45, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that 0 = [x^n] exp(n^2*Integral A(x)^3 dx)/A(x), for n > 0.
RELATED SERIES.
A(x)^2 = 1 + 2*x + 23*x^2 + 478*x^3 + 13819*x^4 + 499636*x^5 + 21382124*x^6 + 1048225434*x^7 + 57622342803*x^8 + 3499302699294*x^9 + ...
A(x)^3 = 1 + 3*x + 36*x^2 + 751*x^3 + 21627*x^4 + 777888*x^5 + 33127964*x^6 + 1617262071*x^7 + 88594431639*x^8 + 5364836605107*x^9 + ...
exp( Integral A(x)^3 dx) = 1 + x + 7*x^2/2! + 235*x^3/3! + 19033*x^4/4! + 2701081*x^5/5! + 578096911*x^6/6! + 171419630467*x^7/7! + 66700397369425*x^8/8! + ...
A'(x)/A(x) = 1 + 21*x + 652*x^2 + 25373*x^3 + 1159491*x^4 + 60142320*x^5 + 3468823324*x^6 + 219440572309*x^7 + 15077173544671*x^8 + ...
PROG
(PARI) {a(n) = my(A=[1], m); for(i=1, n+1, m=#A; A=concat(A, 0); A[m+1] = Vec( exp(m^2*intformal(Ser(A)^3)) / Ser(A) )[m+1] ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 31 2018
STATUS
approved