OFFSET
0,3
COMMENTS
Note: 0 = [x^n] exp( n * Integral 1/F(x) dx ) / F(x) holds for n > 0 when F(x) = 1 + x.
It is remarkable that this sequence should consist entirely of integers.
For n > 0, a(n) is odd iff n = 2^k for k >= 0.
LINKS
Paul D. Hanna, Table of n, a(n) for n = 0..520
FORMULA
a(n) ~ c * d^n * (n-1)!, where d = 4 / (-LambertW(-2*exp(-2)) * (2 + LambertW(-2*exp(-2)))) and c = 0.0604992010464118... - Vaclav Kotesovec, Oct 19 2020
EXAMPLE
O.g.f.: A(x) = 1 + x + 3*x^2 + 26*x^3 + 417*x^4 + 9726*x^5 + 295000*x^6 + 10946172*x^7 + 478392123*x^8 + 24001955894*x^9 + 1357178076996*x^10 + ...
ILLUSTRATION OF DEFINITION.
The table of coefficients of x^k in exp(n^2*Integral 1/A(x) dx)/A(x) begins:
n=0: [1, -1, -2, -21, -364, -8830, -273972, -10313037, -455135384, ...];
n=1: [1, 0, -3, -24, -390, -9264, -284235, -10625424, -466720254, ...];
n=2: [1, 3, 0, -35, -495, -10773, -318192, -11635020, -503631630, ...];
n=3: [1, 8, 25, 0, -700, -14272, -388269, -13599240, -573208625, ...];
n=4: [1, 15, 102, 371, 0, -19746, -525980, -17134953, -691326666, ...];
n=5: [1, 24, 273, 1904, 8136, 0, -716177, -23528472, -891395739, ...];
n=6: [1, 35, 592, 6381, 47945, 238403, 0, -31651620, -1235181962, ...];
n=7: [1, 48, 1125, 17080, 187110, 1536336, 8774025, 0, -1646095140, ...];
n=8: [1, 63, 1950, 39435, 583620, 6681714, 60092844, 389166915, 0, ...]; ...
in which the main diagonal is all zeros after the initial term, illustrating that 0 = [x^n] exp(n^2 * Integral 1/A(x) dx)/A(x), for n > 0.
RELATED SERIES.
1/A(x) = 1 - x - 2*x^2 - 21*x^3 - 364*x^4 - 8830*x^5 - 273972*x^6 - 10313037*x^7 - 455135384*x^8 - 22995056286*x^9 - 1307053358940*x^10 + ...
exp( Integral 1/A(x) dx) = 1 + x - x^3 - 6*x^4 - 78*x^5 - 1544*x^6 - 40605*x^7 - 1328178*x^8 - 51857806*x^9 - 2350025232*x^10 - 121120896906*x^11 - 6991877399100*x^12 + ..., which is an integer series.
A'(x)/A(x) = 1 + 5*x + 70*x^2 + 1557*x^3 + 46316*x^4 + 1705382*x^5 + 74365572*x^6 + 3732699789*x^7 + 211429236472*x^8 + 13318438851990*x^9 + 922595879008860*x^10 + ...
PROG
(PARI) {a(n) = my(A=[1], m); for(i=1, n+1, m=#A; A=concat(A, 0); A[m+1] = Vec( exp(m^2*intformal(1/Ser(A))) / Ser(A) )[m+1] ); A[n+1]}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, May 31 2018
STATUS
approved