login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192554
a(n) = Sum_{k=0..n} abs(Stirling1(n,k))*(-1)^(n-k)*k!^2.
2
1, 1, 3, 26, 398, 9724, 344236, 16663968, 1056631824, 84962783664, 8446120969104, 1016998946575776, 145848462866589600, 24562489788256472064, 4799789988678066147840, 1077128972416478325901824, 275111625956753684599202304
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=0..n} Stirling1(n,k) * k!^2. - Vaclav Kotesovec, Jul 05 2021
a(n) ~ exp(-1/2) * n!^2. - Vaclav Kotesovec, Jul 05 2021
E.g.f.: Sum_{k>=0} k! * log(1+x)^k. - Seiichi Manyama, Apr 22 2022
MATHEMATICA
Table[Sum[Abs[StirlingS1[n, k]](-1)^(n-k)k!^2, {k, 0, n}], {n, 0, 100}]
Table[Sum[StirlingS1[n, k] * k!^2, {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Jul 05 2021 *)
PROG
(Maxima) makelist(sum(abs(stirling1(n, k))*(-1)^(n-k)*k!^2, k, 0, n), n, 0, 24);
(PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(sum(k=0, N, k!*log(1+x)^k))) \\ Seiichi Manyama, Apr 22 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Jul 04 2011
STATUS
approved