login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A206403
E.g.f. A(x) satisfies: exp(A(x)) = 2*exp(A(x)^2) - (1-x), with A(0) = 0.
4
1, 3, 26, 398, 8604, 239296, 8135504, 326921192, 15159790680, 796766681184, 46805302872624, 3039065898588144, 216125148650657232, 16706734205424667296, 1394789126514873632832, 125073511937467759505760, 11989203887017099078716384, 1223407961244225521367780096
OFFSET
1,2
FORMULA
E.g.f.: A(x) = Series_Reversion( 1 + exp(x) - 2*exp(x^2) ).
a(n) ~ sqrt(s/(exp(s)*(1-s+2*s^2))) * n^(n-1) / (exp(n) * (1+exp(s)*(1-1/(2*s)))^(n-1/2)), where s = 0.30957459575023142183... is the root of the equation exp(s) = 4*s*exp(s^2). - Vaclav Kotesovec, Jan 12 2014
EXAMPLE
E.g.f.: A(x) = x + 3*x^2/2! + 26*x^3/3! + 398*x^4/4! + 8604*x^5/5! +...
where A( 1 + exp(x) - 2*exp(x^2) ) = x.
Related expansions:
exp(A(x)) = 1 + x + 4*x^2/2! + 36*x^3/3! + 548*x^4/4! + 11800*x^5/5! +...
2*exp(A(x)^2) = 2 + 4*x^2/2! + 36*x^3/3! + 548*x^4/4! + 11800*x^5/5! +...
MATHEMATICA
Rest[CoefficientList[InverseSeries[Series[1 + Exp[x] - 2*Exp[x^2], {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 12 2014 *)
PROG
(PARI) {a(n)=local(X=x+x*O(x^n)); if(n<1, 0, n!*polcoeff(serreverse(1+exp(X)-2*exp(X^2)), n))}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Feb 07 2012
STATUS
approved