The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A206403 E.g.f. A(x) satisfies: exp(A(x)) = 2*exp(A(x)^2) - (1-x), with A(0) = 0. 4
 1, 3, 26, 398, 8604, 239296, 8135504, 326921192, 15159790680, 796766681184, 46805302872624, 3039065898588144, 216125148650657232, 16706734205424667296, 1394789126514873632832, 125073511937467759505760, 11989203887017099078716384, 1223407961244225521367780096 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Table of n, a(n) for n=1..18. FORMULA E.g.f.: A(x) = Series_Reversion( 1 + exp(x) - 2*exp(x^2) ). a(n) ~ sqrt(s/(exp(s)*(1-s+2*s^2))) * n^(n-1) / (exp(n) * (1+exp(s)*(1-1/(2*s)))^(n-1/2)), where s = 0.30957459575023142183... is the root of the equation exp(s) = 4*s*exp(s^2). - Vaclav Kotesovec, Jan 12 2014 EXAMPLE E.g.f.: A(x) = x + 3*x^2/2! + 26*x^3/3! + 398*x^4/4! + 8604*x^5/5! +... where A( 1 + exp(x) - 2*exp(x^2) ) = x. Related expansions: exp(A(x)) = 1 + x + 4*x^2/2! + 36*x^3/3! + 548*x^4/4! + 11800*x^5/5! +... 2*exp(A(x)^2) = 2 + 4*x^2/2! + 36*x^3/3! + 548*x^4/4! + 11800*x^5/5! +... MATHEMATICA Rest[CoefficientList[InverseSeries[Series[1 + Exp[x] - 2*Exp[x^2], {x, 0, 20}], x], x] * Range[0, 20]!] (* Vaclav Kotesovec, Jan 12 2014 *) PROG (PARI) {a(n)=local(X=x+x*O(x^n)); if(n<1, 0, n!*polcoeff(serreverse(1+exp(X)-2*exp(X^2)), n))} for(n=0, 30, print1(a(n), ", ")) CROSSREFS Cf. A138014, A206401, A206402, A206404, A206405. Sequence in context: A143155 A300283 A326431 * A192554 A306280 A305144 Adjacent sequences: A206400 A206401 A206402 * A206404 A206405 A206406 KEYWORD nonn AUTHOR Paul D. Hanna, Feb 07 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 6 18:42 EDT 2023. Contains 363150 sequences. (Running on oeis4.)