login
A206400
Number of composites of the form n^2 + 1 between two successive primes of this form.
6
0, 1, 1, 3, 3, 1, 3, 3, 1, 9, 3, 13, 1, 9, 7, 9, 5, 3, 15, 5, 3, 3, 1, 3, 3, 11, 3, 5, 3, 9, 5, 3, 3, 19, 1, 3, 13, 5, 5, 3, 9, 5, 3, 3, 5, 9, 3, 15, 5, 7, 11, 13, 9, 33, 1, 9, 3, 5, 13, 9, 5, 3, 3, 19, 1, 3, 3, 15, 5, 39, 7, 11, 13, 5, 7, 9, 39, 1, 7, 1, 7
OFFSET
1,4
COMMENTS
a(n) is the number of composites of A134406 between A002496(n) and A002496(n+1).
LINKS
EXAMPLE
a(4) = 3 because there exist 3 composite numbers of the form n^2+1 : {50, 65, 82} between A002496(4) = 37 and A002496(5) = 101.
MAPLE
i:=0:for n from 2 to 1000 do:x:=n^2+1:if type (x, prime)=true then printf(`%d, `, i):i:=0:else i:=i+1:fi:od:
MATHEMATICA
cfn2[{a_, b_}]:=Count[Range[a+1, b-1], _?(IntegerQ[Sqrt[#-1]]&)]; cfn2/@ Partition[ Select[Prime[Range[50000]], IntegerQ[Sqrt[#-1]]&], 2, 1] (* Harvey P. Dale, Jan 13 2019 *)
PROG
(PARI) c=0; for(n=2, 1e9, !ispseudoprime(n^2+1) & c++ & next; print1(c", "); c=0) \\ M. F. Hasler, Feb 07 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 07 2012
STATUS
approved