|
|
A192555
|
|
a(n) = sum(stirling2(n+1,k+1)*(-1)^(n-k)*k!^2,k=0..n).
|
|
0
|
|
|
1, 0, 2, 18, 302, 7770, 285182, 14169498, 916379102, 74833699770, 7532323742462, 916288114073178, 132533661862902302, 22482642651307262970, 4420834602574484743742, 997471931914411955132058, 255978001773528747607767902
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
LINKS
|
Table of n, a(n) for n=0..16.
|
|
FORMULA
|
a(n) = (-1)^n * Sum_{k = 0..n} A163626(n,k)*k!. - Philippe Deléham, May 25 2015
a(n) ~ exp(-1/2) * n!^2. - Vaclav Kotesovec, Jul 05 2021
|
|
MATHEMATICA
|
Table[Sum[StirlingS2[n+1, k+1](-1)^(n-k)k!^2, {k, 0, n}], {n, 0, 100}]
|
|
PROG
|
(Maxima) makelist(sum(stirling2(n+1, k+1)*(-1)^(n-k)*k!^2, k, 0, n), n, 0, 24);
|
|
CROSSREFS
|
Cf. A000142, A163626
Sequence in context: A224384 A092563 A258922 * A350366 A179497 A296837
Adjacent sequences: A192552 A192553 A192554 * A192556 A192557 A192558
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Emanuele Munarini, Jul 04 2011
|
|
STATUS
|
approved
|
|
|
|