login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192555
a(n) = Sum_{k=0..n} Stirling2(n+1, k+1)*(-1)^(n-k)*k!^2.
0
1, 0, 2, 18, 302, 7770, 285182, 14169498, 916379102, 74833699770, 7532323742462, 916288114073178, 132533661862902302, 22482642651307262970, 4420834602574484743742, 997471931914411955132058, 255978001773528747607767902, 74137405656663750753878861370
OFFSET
0,3
COMMENTS
This sequence is the Akiyama-Tanigawa transform of the factorial numbers. - Peter Luschny, Apr 19 2024
FORMULA
a(n) = (-1)^n * Sum_{k=0..n} A163626(n, k)*k!. - Philippe Deléham, May 25 2015
a(n) ~ exp(-1/2) * n!^2. - Vaclav Kotesovec, Jul 05 2021
MAPLE
ATFactorial := proc(len)
local k, j, A, R, F; F := 1;
for k from 0 to len do
R[k] := F; F := F * (k + 1);
for j from k by -1 to 1 do
R[j - 1] := j * (R[j] - R[j-1])
od;
A[k] := R[0];
od; convert(A, list) end:
ATFactorial(17); # Peter Luschny, Apr 19 2024
MATHEMATICA
Table[Sum[StirlingS2[n+1, k+1](-1)^(n-k)k!^2, {k, 0, n}], {n, 0, 100}]
PROG
(Maxima) makelist(sum(stirling2(n+1, k+1)*(-1)^(n-k)*k!^2, k, 0, n), n, 0, 24);
CROSSREFS
Sequence in context: A377546 A092563 A258922 * A370941 A375870 A350366
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Jul 04 2011
STATUS
approved